• Title/Summary/Keyword: asymmetric deformation

Search Result 104, Processing Time 0.016 seconds

A Study on Seismic Performance for CFT Square Column-to-Beam Connections Reinforced with Asymmetric Lower Diaphragms (이형 하부다이아프램으로 보강된 각형 CFT 기둥-보 접합부의 내진성능에 관한 연구)

  • Choi, Sung Mo;Yun, Yeo Sang;Kim, Yo Suk;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.579-589
    • /
    • 2003
  • Most beam-to-column connections are symmetrically reinforced because of the reverse action caused by earthquakes. However, in weak-earthquake regions like Korea, asymmetrically reinforced connections could be used. In particular, the connections between concrete-filled tube (CFT) column and H-shape beam could be applied using a simplified lower diaphragm. The tensile capacity or Combined Cross Diaphragm for upper reinforcing was tested using a simple tension test. Four types for lower reinforcing combined Cross, none, horizontal T-bar, and vertical plate were tested using the ANSI/AISC SSPEC 2002 loading program. Horizontal T-bar and stud bolts in vertical flat, bar transmit tensile stress from the beam's bottom flange to filled concrete. All test specimens satisfied 0.01 radian inelastic rotational requirement in ordinary moment frame of AISC seismic provision. According to the results of the parametric studies simplified lower diaphragms demonstrated outstanding strength, stiffness, and plastic deformation capacity which could lead to more sufficient seismic performance in the field.

Study on Tensile Properties of Carbon Fiber Reinforced Polymers (CFRP) Laminate with Strain Distribution (변형률 분포를 가진 탄소섬유복합체의 인장특성에 대한 연구)

  • Kim, Yun-Gon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.25-33
    • /
    • 2020
  • To investigate the relationship between strain distribution and tensile properties of brittle material, five types of tensile coupon of carbon fiber reinforced polymer (CFRP) modified the tab portion in order to have a strain distribution including S0, SD1, SD2, SV1, SV2 were tested. The ultimate stress and strain of SD2 and SV2 which was intended to have larger strain distribution were smaller than those of SD1 and SV1, that was more clearly shown in the test results of the symmetric coupons (SV series) than the asymmetric coupons (SD series). In addition, the ultimate stress and strain of most coupons with strain distribution in this study were decreased when compared to the control group with uniform strain. These results were analyzed in various ways through 1) the average of the strain values directly measured by the strain gages, 2) the converted strain calculated by dividing the total deformation by the effective length, and 3) the ultimate effective strain derived from both the elastic modulus and the ultimate load. The values measured by strain gage indicates response of the local region precisely, but it does not represent the response from whole section. However, the converted strain and effective strain can supplement disadvantage of gage because they represent the average response of whole section. In particular, the effective strain can provide rupture strain conservatively, which can be utilized in practice, when the value obtained by strain gage was not effective due to gage damage or abnormal gage readings near ultimate load. This value provides a value that can be used even when partial rupture has occurred and is reasonably useful for specimens with strain distribution.

Structural Evolution of the Eastern Margin of Korea: Implications for the Opening of the East Sea (Japan Sea) (한국 동쪽 대륙주변부의 구조적 진화와 동해의 형성)

  • Kim Han-Joon;Jou Hyeong-Tae;Lee Gwang-Hoon;Yoo Hai-Soo;Park Gun-Tae
    • Economic and Environmental Geology
    • /
    • v.39 no.3 s.178
    • /
    • pp.235-253
    • /
    • 2006
  • We interpreted marine seismic profiles in conjunction with swath bathymetric and magnetic data to investigate rifting to breakup processes at the Korean margin leading to the separation of the Japan Arc. The Korean margin is rimmed by fundamental elements of rift architecture comprizing a seaward succession of a rift basin and an uplifted rift flank passing into the slope, typical of a passive continental margin. In the northern part, rifting occurred in the Korea Plateau, a continental fragment extended and partially segmented from the Korean Peninsula, that provided a relatively broader zone of extension resulting in a number of rifts. Two distinguished rift basins (Onnuri and Bandal Basins) in the Korea Plateau we bounded by major synthetic and smaller antithetic faults, creating wide and symmetric profiles. The large-offset border fault zones of these basins have convex dip slopes and demonstrate a zig-zag arrangement along strike. In contrast, the southern margin is engraved along its length with a single narrow rift basin (Hupo Basin) that is an elongated asymmetric half-graben. Rifting at the Korean margin was primarily controlled by normal faulting resulting from extension in the west and southeast directions orthogonal to the inferred line of breakup along the base of the slope rather than strike-slip deformation. Although rifting involved no significant volcanism, the inception of sea floor spreading documents a pronounced volcanic phase which seems to reflect slab-induced asthenospheric upwelling as well as rift-induced convection particularly in the narrow southern margin. We suggest that structural and igneous evolution of the Korean margin can be explained by the processes occurring at the passive continental margin with magmatism intensified by asthenospheric upwelling in a back-arc setting.

Tectonic evolution of the Central Ogcheon Belt, Korea (중부 옥천대의 지구조 발달과정)

  • Kang, Ji-Hoon;Hayasaka, Yasutaka;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.129-150
    • /
    • 2012
  • The tectonic evolution of the Central Ogcheon Belt has been newly analyzed in this paper from the detailed geological maps by lithofacies classification, the development processes of geological structures, microstructures, and the time-relationship between deformation and metamorphism in the Ogcheon, Cheongsan, Mungyeong Buunnyeong, Busan areas, Korea and the fossil and radiometric age data of the Ogcheon Supergroup(OSG). The 1st tectonic phase($D^*$) is marked by the rifting of the original Gyeonggi Massif into North Gyeonggi Massif(present Gyeonggi Massif) and South Gyeonggi Massif (Bakdallyeong and Busan gneiss complexes). The Joseon Supergroup(JSG) and the lower unit(quartzose psammitic, pelitic, calcareous and basic rocks) of OSG were deposited in the Ogcheon rift basin during Early Paleozoic time, and the Pyeongan Supergroup(PSG) and its upper unit(conglomerate and pelitic rocks and acidic rocks) appeared in Late Paleozoic time. The 2nd tectonic phase(Ogcheon-Cheongsan phase/Songnim orogeny: D1), which occurred during Late Permian-Middle Triassic age, is characterized by the closing of Ogcheon rift basin(= the coupling of the North and South Gyeonggi Massifs) in the earlier phase(Ogcheon subphase: D1a), and by the coupling of South China block(Gyeonggi Massif and Ogcheon Zone) and North China block(Yeongnam Massif and Taebaksan Zone) in the later phase(Cheongsan subphase: D1b). At the earlier stage of D1a occurred the M1 medium-pressure type metamorphism of OSG related to the growth of coarse biotites, garnets, staurolites. At its later stage, the medium-pressure type metamorphic rocks were exhumed as some nappes with SE-vergence, and the giant-scale sheath fold, regional foliation, stretching lineation were formed in the OSG. At the D1b subphase which occurs under (N)NE-(S)SW compression, the thrusts with NNE- or/and SSW-vergence were formed in the front and rear parts of couple, and the NNE-trending Cheongsan shear zone of dextral strike-slip and the NNE-trending upright folds of the JSG and PSG were also formed in its flank part, and Daedong basin was built in Korean Peninsula. After that, Daedong Group(DG) of the Late Triassic-Early Jurassic was deposited. The 3rd tectonic phase(Honam phase/Daebo orogeny: D2) occurred by the transpression tectonics of NNE-trending Honam dextral strike-slip shearing in Early~Late Jurassic time, and formed the asymmetric crenulated fold in the OSG and the NNE-trending recumbent folds in the JSG and PSG and the thrust faults with ESE-vergence in which pre-Late Triassic Supergroups override DG. The M2 contact metamorphism of andalusite-sillimanite type by the intrusion of Daebo granitoids occurred at the D2 intertectonic phase of Middle Jurassic age. The 4th tectonic phase(Cheongmari phase: D3) occurred under the N-S compression at Early Cretaceous time, and formed the pull-apart Cretaceous sedimentary basins accompanying the NNE-trending sinistral strike-slip shearing. The M3 retrograde metamorphism of OSG associated with the crystallization of chlorite porphyroblasts mainly occurred after the D2. After the D3, the sinistral displacement(Geumgang phase: D4) occurred along the Geumgang fault accompanied with the giant-scale Geumgang drag fold with its parasitic kink folds in the Ogcheon area. These folds are intruded by acidic dykes of Late Cretaceous age.