• Title/Summary/Keyword: astronomy section

Search Result 67, Processing Time 0.024 seconds

How Much Power can be Obtained from the Tides?

  • Garrett, Chris
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.74-79
    • /
    • 2006
  • General formula are presented for the maximum power available from the tidal head in a closed basin and from the tidal currents in a channel connecting two large bodies of water. In the latter case, the available energy cannot be estimated from the kinetic energy flux in the undisturbed state, but can be obtained from knowledge of the tidal head between the ends of the channel and the maximum volume flux in the undisturbed state. The results are supported by detailed calculations for Johnstone Strait, British Columbia, using a two-dimensional finite element model. The model also allows an extension to the case of multiple channels. More work is needed to allow for partial tidal fences which do not occupy the whole cross-section of a channel.

  • PDF

Petrogenetic Significance of the New Petrogenetic Grid (2000) Compared with Synthetic System and Theoretically Computed Grid

  • Ahn, Kun-Sang;Nakamura, Yasuo;Shin, In-Hyun
    • Journal of the Korean earth science society
    • /
    • v.23 no.1
    • /
    • pp.105-111
    • /
    • 2002
  • The observation of the new biotite isograd (chlorite + chloritoid = andalusite + biotite) in the Mungyong coal field requires the modification of Harte and Hudson's (1979) metapelite grid which eliminates the stability field of staurolite + cordierite assemblages. The newly proposed metapelite grid by Ahn and Nakamura (2000) can define more properly the isograd reaction observed from nature. We discuss first topological interrelations between synthetic system (FASHO-, KFASHO-, KFMASH system) on an isobaric section at 2kbar, where phase relations are well constrained. The following discussion is concentrated on the topological relations between stable reactions. At the last, we discuss the petrogenetic significance of the Ahn's petrogenetic grid compared with theoretically computed grids. Ahn's petrogenetic grid is consistent with synthetic and natural system, and is one of the excellent example of KFMASH approximation in metapelite.

High Resolution Spectroscopy of Raman Features in Symbiotic Stars and Young Planetary Nebulae Using the BOES

  • Lee, Hee-Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.59.4-60
    • /
    • 2016
  • One important aspect of the late stage stellar evolution is the mass loss processes, where a significant amount of stellar material will be returned to the interstellar space to be used for stars of the next generation. Raman scattered O VI and He II by atomic hydrogen in symbiotic stars and young planetary nebulae are found to be excellent tools to investigate the mass loss processes and estimate the mass loss rate. These features appear near hydrogen Balmer emission lines due to the huge cross section in the vicinity of Lyman resonance transitions. With the capability of high spectral resolution and broad spectral coverage, BOES is an ideal instrument to perform Raman spectroscopy of these objects. In this talk, a cursory overview of our research activities on Raman spectroscopy of symbiotics and PNe using the BOES is presented.

  • PDF

Probing neutral gas clouds and associated galaxies in the early universe

  • Ranjan, Adarsh
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.41.1-41.1
    • /
    • 2021
  • Neutral (HI) gas clouds associated with galaxies are responsible for fuelling the star-formation in the universe. In literature, the extremely strong damped Lyman-alpha absorbers (or ESDLAs) have been known to be sensitive to the effects of HI-H2 transition and star-formation in galaxies. Yet, ESDLAs are rare to probe due to the smaller cross section they subtend on the sky (similar to galaxies). In my talk, I will focus primarily on my study of the nature of ESDLAs that are observed as absorption signature along the line-of-sight (LOS) of a quasar (QSO). I will further look at the HI-H2 transition and interesting results relevant to diffuse molecular gas and the multi-phase medium (gas in different ionization states) that are associated with ESDLAs. Furthermore, I will also discuss how the ESDLA environments differ from the high star-forming and molecular environments detected in blind optical and radio surveys consecutively.

  • PDF

Analysis of Research in Earth Science at the Science Fair Using the Semantic Network Analysis: Focus on the Last 21 Years (2000-2020) (언어네트워크를 이용한 과학전람회 지구과학 부문 탐구주제 분석: 최근 21년(2000-2020년)을 중심으로)

  • Kyu-Seong Cho;Duk-Ho Chung;Dong-Gwon Jeong;Cheon-ji Kang
    • Journal of the Korean earth science society
    • /
    • v.44 no.1
    • /
    • pp.62-78
    • /
    • 2023
  • The purpose of this study is to analyze the field of Earth science at a science fair. For this purpose, 566 pieces of data spanning 21 years (2000 to 2020), acquired from entries in the Earth Science section on the science fair website, were analyzed using the semantic network method. As a result, geoscience topics have been actively explored in works submitted for the Earth Science section of the science fair. Fossils from the Cretaceous period of the Mesozoic Era were particularly predominant. Together with these, keywords corresponding to astronomy, space science, and atmospheric science formed a small-scale network. Astronomy and space science mainly dealt with the dynamic characteristics of asteroids, Venus, and Jupiter. Other subjects included the solar system, sunspots, and lunar phases. Atmospheric science has focused on atmospheric physics, atmospheric observation and analysis technology, atmospheric dynamics, air quality monitoring, while marine science has been limited to physical oceanography and geologic oceanography. This study, is expected to help select Earth Science topics and conduct inquiry activities in schools.

A Study on the Punggi (風旗), Meteorological Instrument Made in the Joseon Dynasty (조선시대의 바람 관측기기인 풍기(風旗)의 연구)

  • Jeon, Jun Hyeok;Lee, Yong-Sam
    • Atmosphere
    • /
    • v.23 no.1
    • /
    • pp.47-61
    • /
    • 2013
  • The Punggi (風旗) is one of the meteorological instruments made in the Joseon Dynasty (朝鮮王朝). Its purpose was to observe the direction of the wind. It is estimated that it started its operation in the $16^{th}$ century at least. But it does not remain in a perfect form, like the Chugugi (測雨器) and the Supyo (水標). The Punggi (風旗) can only be found at old document data, while the stone used to build the Punggi still remains. Since the stone had been named as the Punggi-dae (風旗臺) by 和田雄治 (1917), the name has not been changed until now. The Punggi is currently located in the Gyeongbok-gung (景福宮) and the Changgyeong-gung (昌慶宮). Meantime, there have been several transfers of its position. However, 和田雄治 (1917)'s paper and the "每日新報" (Maeil-Sinbo, 1929) articles have provided new clues. Also, the word 'Hupungso (候風所)' was found in the "朝鮮王朝實錄" (The annals of the Joseon Dynasty) and the "承政院日記" (Daily records of royal secretariat of Joseon dynasty). A designed harbor where the ship was staying was usually considered a special section for wind observations. It is assumed that the Hupungso was in most of the harbors at that time. This paper assumes the Punggi and the Hupungso had a lot of interest in wind observations in the Joseon Dynasty. In this study, we'll look for contained information about the Punggi and the viewpoints about wind during the Joseon Dynasty.

STATISTICS OF GRAVITATIONAL LENSING BY A GALAXY IN CLUSTER OR IN FIELD

  • YOON SO-YOON;PARK MYEONG-GU
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.2
    • /
    • pp.119-136
    • /
    • 1996
  • To examine the effect of neighboring galaxies on the gravitational lensing statistics, we performed numerical simulations of lensing by many galaxies. The models consist of a galaxy in the rich cluster like Coma, or a galaxy surrounded by field galaxies in $\Omega_0 = 1$ universe with $\Omega_{gal} = 0.1,\;\Omega_{gal} = 0.3\;or\;\Omega_{gal}=1.0\;,\;where\;\Omega_{gal}$ is the total mass in galaxies. Field galaxies either have the same mass or follow Schechter luminosity function and luminosity-velocity relation. Each lensing galaxy is assumed to be singular isothermal sphere (SIS) with finite cutoff radius. In most simulations, the lensing is mainly due to the single galaxy. But in $\Omega_{gal} = 3$ universe, one out of five simulations have 'collective lensing' event in which more than two galaxies collectively produce multiple images. These cases cannot be incorporated into the simple 'standard' lensing statistics calculations. In cases where 'collective lensing' does not occur, distribution of image separation changes from delta function to bimodal distribution due to shear induced by the surrounding galaxies. The amount of spread in the distribution is from a few $\%\;up\;to\;50\%$ of the mean image separation in case when the galaxy is in the Coma-like cluster or when the galaxy is in the field with $\Omega_{gal} = 0.1\;or\;\Omega_{gal}=0.3.$ The mean of the image separation changes less than $5\%$ compared with a single lens case. Cross section for multiple image lensing turns out to be relatively insensitive to the presence of the neighboring galaxies, changing less than $5\%$ for Coma-like cluster and $\Omega_{gal}=0.1,\;0.3$ universe cases. So we conclude that Coma-like cluster or field galaxies whose total mass density $\Omega_{gal}<0.3$ do not significantly affect the probability of multiple image lensing if we exclude the 'collective lensing' cases. However, the distribution of the image separations can be significantly affected especially if the 'collective lensing' cases are included. Therefore, the effects of surrounding galaxies may not be negligible when statistics of lensing is used to deduce the cosmological informations.

  • PDF

A Study of Double Dark Photons Produced by Lepton Colliders using High Performance Computing

  • Park, Kihong;Kim, Kyungho;Cho, Kihyeon
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • The universe is thought to be filled with not only Standard Model (SM) matters but also dark matters. Dark matter is thought to play a major role in its construction. However, the identity of dark matter is as yet unknown, with various search methods from astrophysical observartion to particle collider experiments. Because of the cross-section that is a thousand times smaller than SM particles, dark matter research requires a large amount of data processing. Therefore, optimization and parallelization in High Performance Computing is required. Dark matter in hypothetical hidden sector is though to be connected to dark photons which carries forces similar to photons in electromagnetism. In the recent analysis, it was studied using the decays of a dark photon at collider experiments. Based on this, we studies double dark photon decays at lepton colliders. The signal channels are e+e- → A'A' and e+e- → A'A'γ where dark photon A' decays dimuon. These signal channels are based on the theory that dark photons only decay into heavily charged leptons, which can explain the muon magnetic momentum anomaly. We scanned the cross-section according to the dark photon mass in experiments. MadGraph5 was used to generate events based on a simplified model. Additionally, to get the maximum expected number of events for the double dark photon channel, the detector efficiency for several center of mass (CM) energy were studied using Delphes and MadAnalysis5 for performance comparison. The results of this study will contribute to the search for double dark photon channels at lepton colliders.

Analysis of Scientific Inquiry Activities in the Astronomy Section of School Science Textbooks (과학 교과서 천문 단원의 탐구 활동 분석)

  • Kim, Kyoung-Mi;Park, Young-Shin;Choe, Seung-Urn
    • Journal of the Korean earth science society
    • /
    • v.29 no.2
    • /
    • pp.204-217
    • /
    • 2008
  • This study analyzed the inquiry activities appearing in the astronomy sections of elementary, middle and highschool level science textbooks according to the five essential features of inquiry in the classroom as proposed by the National Science Education Standards (NRC, 2000), and SAPA (Science-A Process Approach). On the basis of this analysis, it is clear that the science textbook inquiry activities released the limitation to meet the goal of science education, namely scientific literacy, as it has been laid out by the 7th Science Educational Curriculum. This study revealed that the features of scientific inquiry which are most frequently used in the astronomy sections of science textbooks are 'data collection' and 'form explanation', whereas the features of 'oriented-question', 'evaluate explanations' and 'communicate and justify' rarely appeared. The analysis of inquiry activities by SAPA showed that the basic inquiry skills of 'observing', 'communicating' and 'manipulating materials' were used with increasing frequency according to grade level, and the integrated skills of 'investigating', 'creating models', 'interpreting data' and 'experimenting' were more emphasized in the textbooks. Therefore, it is suggested that students be provided with more opportunities to experience all the features of scientific inquiry and scientific processes as envisioned by the 7th Science Educational Curriculum in order to achieve the stated goal of scientific literacy. Science educators should be required to develop new lesson modules which will allow students to experience authentic scientific inquiry. It is crucial for science teachers to reflect upon and develop their understanding and teaching strategies regarding scientific inquiry through professional development programs in teacher education.

Intrusion of a Magnetic Field through the Overlying Field in the Solar Atmosphere Induced by Ballooning Instability

  • Jun, Hong-Da;Choe, G.S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.26.2-26.2
    • /
    • 2010
  • It has been a puzzle in solar physics how a low-lying magnetic structure such as a solar prominence surrounded by a strongly line-tied overlying field sometimes intrudes through the latter and goes into eruption. A numerical simulation study of the solar coronal plasma reveals that a ballooning instability can explain this type of eruptive process. We consider an idealized situation with two flux ropes merging. When magnetic field lines from different flux ropes reconnect, a new field line connecting farther footpoints is generated. Since the field line length abruptly increases, the field line expands outward. If the plasma beta is low, this expansion takes place more or less evenly over the whole field line. If, on the other hand, the plasma beta is high enough somewhere in this field line, the outward expansion is not even, but is localized as in a bulging balloon. This ballooning section of the magnetic field penetrates out of the overlying field, and eventually the originally underlying field and the overlying field come to interchange their apex positions. This process may explain how a field structure that has stably been confined by an overlying field can occasionally show a localized eruptive behavior.

  • PDF