• Title/Summary/Keyword: astronomical telescopes

Search Result 282, Processing Time 0.028 seconds

BVI PHOTOMETRIC STUDY OF THE OLD OPEN CLUSTER RUPRECHT 6

  • Kim, Sang Chul;Kyeong, Jaemann;Park, Hong Soo;Han, Ilseung;Lee, Joon Hyeop;Moon, Dae-Sik;Lee, Youngdae;Kim, Seongjae
    • Journal of The Korean Astronomical Society
    • /
    • v.50 no.3
    • /
    • pp.79-92
    • /
    • 2017
  • We present a BV I optical photometric study of the old open cluster Ruprecht 6 using the data obtained with the SMARTS 1.0 m telescope at the CTIO, Chile. Its color-magnitude diagrams show the clear existence of the main-sequence stars, whose turn-off point is located around $V{\approx}18.45mag$ and $B-V{\approx}0.85mag$. Three red clump (RC) stars are identified at V = 16.00 mag, I = 14.41 mag and B - V = 1.35 mag. From the mean $K_s-band$ magnitude of RC stars ($K_s=12.39{\pm}0.21mag$) in Ruprecht 6 from 2MASS photometry and the known absolute magnitudes of the RC stars ($M_{K_S}=-1.595{\pm}0.025mag$), we obtain the distance modulus to Ruprecht 6 of $(m-M)_0=13.84{\pm}0.21mag$ ($d=5.86{\pm}0.60kpc$). From the ($J-K_s$) and (B - V ) colors of the RC stars, comparison of the (B - V ) and (V - I) colors of the bright stars in Ruprecht 6 with those of the intrinsic colors of dwarf and giant stars, and the PARSEC isochrone fittings, we derive the reddening values of E(B - V ) = 0.42 mag and E(V - I) = 0.60 mag. Using the PARSEC isochrone fittings onto the color-magnitude diagrams, we estimate the age and metallicity to be: $log(t)=9.50{\pm}0.10(t=3.16{\pm}0.82Gyr)$ and $[Fe/H]=-0.42{\pm}0.04dex$. We present the Galactocentric radial metallicity gradient analysis for old (age > 1 Gyr) open clusters of the Dias et al. catalog, which likely follow a single relation of $[Fe/H]=(-0.034{\pm}0.007)R_{GC}+(0.190{\pm}0.080)$ (rms = 0.201) for the whole radial range or a dual relation of $[Fe/H]=(-0.077{\pm}0.017)R_{GC}+(0.609{\pm}0.161)$ (rms = 0.152) and constant ([Fe/H] ~ -0.3 dex) value, inside and outside of RGC ~ 12 kpc, respectively. The metallicity and Galactocentric radius ($13.28{\pm}0.54kpc$) of Ruprecht 6 obtained in this study seem to be consistent with both of the relations.

A SUPER-JUPITER MICROLENS PLANET CHARACTERIZED BY HIGH-CADENCE KMTNET MICROLENSING SURVEY OBSERVATIONS OF OGLE-2015-BLG-0954

  • SHIN, I.-G.;RYU, Y.-H.;UDALSKI, A.;ALBROW, M.;CHA, S.-M.;CHOI, J.-Y.;CHUNG, S.-J.;HAN, C.;HWANG, K.-H.;JUNG, Y.K.;KIM, D.-J.;KIM, S.-L.;LEE, C.-U.;LEE, Y.;PARK, B.-G.;PARK, H.;POGGE, R.W.;YEE, J.C.;PIETRUKOWICZ, P.;MROZ, P.;KOZLOWSKI, S.;POLESKI, R.;SKOWRON, J.;SOSZYNSKI, I.;SZYMANSKI, M.K.;ULACZYK, K.;WYRZYKOWSKI, L.;PAWLAK, M.;GOULD, A.
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.3
    • /
    • pp.73-81
    • /
    • 2016
  • We report the characterization of a massive (mp = 3.9±1.4Mjup) microlensing planet (OGLE-2015-BLG-0954Lb) orbiting an M dwarf host (M = 0.33 ± 0.12M) at a distance toward the Galactic bulge of $0.6^{+0.4}_{-0.2}kpc$, which is extremely nearby by microlensing standards. The planet-host projected separation is a⊥ ~ 1.2AU. The characterization was made possible by the wide-field (4 deg2) high cadence (Γ = 6 hr–1) monitoring of the Korea Microlensing Telescope Network (KMTNet), which had two of its three telescopes in commissioning operations at the time of the planetary anomaly. The source crossing time t* = 16 min is among the shortest ever published. The high-cadence, wide-field observations that are the hallmark of KMTNet are the only way to routinely capture such short crossings. High-cadence resolution of short caustic crossings will preferentially lead to mass and distance measurements for the lens. This is because the short crossing time typically implies a nearby lens, which enables the measurement of additional effects (bright lens and/or microlens parallax). When combined with the measured crossing time, these effects can yield planet/host masses and distance.

TIME-SERIES PHOTOMETRY OF VARIABLE STARS IN THE GLOBULAR CLUSTER NGC 288

  • Lee, Dong-Joo;Koo, Jae-Rim;Hong, Kyeongsoo;Kim, Seung-Lee;Lee, Jae Woo;Lee, Chung-Uk;Jeon, Young-Beom;Kim, Yun-Hak;Lim, Beomdu;Ryu, Yoon-Hyun;Cha, Sang-Mok;Lee, Yongseok;Kim, Dong-Jin;Park, Byeong-Gon;Kim, Chun-Hwey
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.6
    • /
    • pp.295-306
    • /
    • 2016
  • We present the results of BV time-series photometry of the globular cluster NGC 288. Observations were carried out to search for variable stars using the Korea Microlensing Telescope Network (KMTNet) 1.6-m telescopes and a 4k pre-science CCD camera during a test observation from August to December, 2014. We found a new SX Phe star and confirmed twelve previously known variable stars in NGC 288. For the semi-regular variable star V1, we newly determined a period of 37.3 days from light curves spanning 137 days. The light-curve solution of the eclipsing binary V10 indicates that the system is probably a detached system. The pulsation properties of nine SX Phe stars were examined by applying multiple frequency analysis to their light curves. We derived a new Period-Luminosity (P-L) relation, ${\langle}M_V{\rangle}=-2.476({\pm}0.300){\log}P-0.354({\pm}0.385)$, from six SX Phe stars showing the fundamental mode. Additionally, the period ratios of three SX Phe stars that probably have a double-radial mode were investigated; $P_{FO}/P_F=0.779$ for V5, $P_{TO}/P_{FO}=0.685$ for V9, $P_{SO}/P_{FO}=0.811$ for V11. This paper is the first contribution in a series assessing the detections and properties of variable stars in six southern globular clusters with the KMTNet system.

Detection of short-term flux variability and intraday variability in polarized emission at millimeter-wavelength from S5 0716+714

  • Lee, Jeewon;Sohn, Bong Won;Byun, Do-Young;Lee, Jeong Ae;Lee, Sang Sung;Kang, Sincheol;Kim, Sungsoo S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.33.1-33.1
    • /
    • 2016
  • We report detection of short-term flux variability in multi-epoch observations and intraday variability in polarized emission at millimeter-wavelength from S5 0716+714 using Korean VLBI Network (KVN) radio telescopes. Over the whole observation epochs, the source shows significant inter-month variations at K- and Q-band with modulation indices of 19% at K-band and 36% at Q-band. In each epoch, the source shows monotonic flux increase in Epoch 1 and 3, and monotonic flux decrease in Epoch 2 and 4. We found an inverted spectrum with mean spectral indices of -0.57 in Epoch 1 and -0.15 in Epoch. On the contrary, we found relatively steep indices of 0.24 and 0.17 in Epoch 2 and Epoch 4, respectively. In the study of intraday variability of polarization, we found significant variations in the degree of linear polarization at 86 GHz, and in polarization angle at 43 and 86 GHz during ~10 h. The spectrum of the source is quite flat with spectral indices of -0.07 to 0.07 at 22-43 GHz and -0.23 to 0.04 at 43-86 GHz. The measured degree of the linear polarization ranges from 2.3% to 3.3 % at 22 GHz, from 0.9% to 2.2 % at 43 GHz and from 0.4 % to 4.0 % at 86 GHz, yielding prominent variations at 86 GHz over 4-5 h. The linear polarization angle is in the range of 4 to $12^{\circ}$ at 22 GHz, -39 to $81^{\circ}$ at 43 GHz, and 66 to 119 at 86 GHz with a maximum rotation of $110^{\circ}$ at 43 GHz over ~4 h. We estimated the Faraday rotation measures (RM) ranging from -9200 to 6300 rad m-2 between 22 and 43 GHz, and from -71000 to 7300 rad m-2 between 43 and 86 GHz, respectively. The frequency dependency of RM was investigated, yielding a mean power-law index, a, of 2.0. This implies that the polarized emission from S5 0716+714 at 22-86 GHz moves through a Faraday screen in or near the jet of the source.

  • PDF

M101 Supernova

  • Im, Myung-Shin;Pak, Soo-Jong;Park, Won-Kee;Baek, Gi-Seon;Oh, Young-Seok;Kim, Ji-Hoon;Choi, Chang-Su;Hong, Ju-Eun;Jeon, Yi-Seul;Jun, Hyun-Sung;Kim, Do-Hyeong;Kim, Du-Ho;Jang, Min-Sung;Park, Geun-Hong;Yang, Hee-Su;Jeong, Il-Gyo;Lee, Bang-Won;Yang, Hong-Kyu;Sohn, Ju-Bee;Lee, Gwang-Ho;Yoon, Yosep
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.77.2-77.2
    • /
    • 2011
  • We present our follow-up observation of the recently discovered supernova in M101. Being only 6.4 Mpc away from the Earth, the object is a Type-Ia supernova discovered this close in decades. We followed up this event with various observing facilities including on-campus telescopes at Seoul National University, the McDonald observatoy's 2.1m telescope, and UKIRT 4-m telescope. The light curves and the preliminary analysis of the multi-wavelength data will be presented, which cover the wavelengths from optical to NIR.

  • PDF

STATUS AND PROGRESS OF ARGO-M SYSTEM DEVELOPMENT (인공위성 레이저추적 시스템(ARGO-M) 개발 현황)

  • Park, Eun-Seo;Yu, S.Y.;Lim, H.C.;Bang, S.C.;Seo, Y.K.;Park, J.H.;Jo, J.H.;Park, J.U.;Nah, J.K.;Jang, J.G.;Jang, B.H.;Kim, K.D.;Kim, B.I.;Park, C.H.;Lee, S.H.;Ham, S.Y.;Son, Y.S.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.3
    • /
    • pp.49-59
    • /
    • 2012
  • KASI (Korea Astronomy and Space Science Institute) has developed an SLR (Satellite Laser Ranging) system since 2008. The name of the development program is ARGO (Accurate Ranging system for Geodetic Observation). ARGO has a wide range of applications in the satellite precise orbit determination and space geodesy research using SLR with mm-level accuracy. ARGO-M (Mobile, bistatic 10 cm transmitting/40 cm receiving telescopes) and ARGO-F (Fixed stationary, about 1 m transmitting/receiving integrated telescope) SLR systems development will be completed by 2014. In 2011, ARGO-M system integration was completed. At present ARGO-M is in the course of system calibration, functionality, and performance tests. It consists of six subsystems, OPS (Optics System), TMS (Tracking Mount System), OES (Opto-Electronic System), CDS (Container-Dome System), LAS (Laser System) and AOS (ARGO Operation System). In this paper, ARGO-M system structure and integration status are introduced and described.

Current Status and Future Prospects of Korean VLBI Network (KVN)

  • Jung, Taehyun;Sohn, Bong Won;So, Byunghwa;Oh, Chungsik;Je, Do-Heung;Byun, Do-Young;Jung, Dong-Kyu;Roh, Duk Gyoo;Lee, Euikyum;Kim, Hyo Ryoung;Kim, Hyun-Goo;Byun, Hyungkyu;Chung, Hyunsoo;Yim, In Sung;Kim, Jae-Young;Kim, Jaeheon;Yeom, Jaehwan;Shin, Jaesik;Park, Jeong-Je;Kim, Jeong-Sook;Hwang, Jungwook;Wajima, Kiyoaki;Song, Min-Gyu;Chung, Moon-Hee;Sakai, Nobuyuki;Lee, Sang-Hyun;Lee, Sang-Sung;Oh, Sej-Jin;Wi, Seog Oh;Kim, Seungrae;Kim, Soon-Wook;Lee, Sung-Mo;Kang, Yong-Woo;Minh, Young Chol;Kim, Young-Sik;Yun, Youngjoo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.60.3-61
    • /
    • 2021
  • The Korean VLBI Network (KVN) consists of three 21m radio telescopes installed in Seoul, Ulsan, and Jeju Island with the world's first 4-channel receiver that can observe four different frequencies (e.g., 22, 43, 86, 129 GHz) simultaneously. This receiving system of KVN is particularly effective in millimeter-wavelength VLBI (mm-VLBI) observations by compensating fast atmospheric fluctuations effectively. This technology is now being enhanced with a compact triple-band receiver, becoming the world standard for a mm-VLBI system. In 2020, KVN supported 54 observing programs (KVN: 28, EAVN: 26) including the 2nd KVN Key Science Program (KSP) which supports 8Gbps data recording rate and the East Asian VLBI Network (EAVN) programs. KVN also participated in the European VLBI Network (EVN) and GMVA (Global Millimeter VLBI Array) sessions regularly. Here, we report current status and future propsects of KVN.

  • PDF

Rendezvous Mission to Apophis: III. Polarimetry of S-type: For A Better Understanding of Surficial Evolution

  • Geem, Jooyeon;Jeong, Minsup;Jin, Sunho;Sim, Chae Kyung;Bach, Yoonsoo P.;Ishiguro, Masateru;Kwon, Yuna G.;Moon, Hong-Kyu;Choi, Young-Jun;Kim, Myung-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.57.4-58
    • /
    • 2021
  • Asteroids have undergone various processes such as impacts, space weathering, and thermal evolution. Because they expose their surfaces to space without atmosphere, these evolutional processes have been recorded directly on their surfaces. The remote-sensing observations have been conducted to reveal these evolutional histories of the target asteroids. For example, crater and boulder distributions are unambiguous evidence for past nondestructive impacts with other celestial bodies. Multiband and spectroscopic observations have revealed space-weathering history (as well as compositions). Whereas most physical quantities have been examined intensively using spacecraft and telescopes, only a little has been studied on "the grain size". It is one of the fundamental physical quantities for diagnosing the collisional and thermal history of asteroids. Our group has conducted polarimetric research of asteroids (as well as Moon [1]) to determine the particle size and further investigate the evolutional histories of target asteroids [2],[3]. For example, the existence of regolith on an S-type asteroid, Toutatis, was suggested almost twenty years before space exploration [4]. Moreover, we reported that near-Sun asteroids indicate a signature of submillimeter grains, which could be created by a thermal sintering process by solar radiation [5]. However, it is important to note that in-situ polarimetry has not been reported on the asteroid surface, although the Korean Lunar Exploration Program aims to do polarimetry on the lunar surface [6]. Therefore, it is expected that the polarizer mounted on the Korean Apophis spacecraft can make the first estimate of the grain size and its regional variation over the Apophis surface. In this presentation, we outline research of S-type asteroid surfaces through remote-sensing observations and consider the role of polarimetry. Based on this review, we consider the purpose, potentiality, and strategy of the polarimetry using the onboard device for the Apophis spacecraft. We will report a possible polarization phase curve of Apophis estimated from ordinary chondrites and past observational data of S-type asteroids, taking account of the space weathering effect. Based on this estimation, we will consider the strategy of how to determine the particle size (and space weathering degree) of the Apophis surface. We will also mention the detectability of dust hovering on the surface.

  • PDF

PERFORMANCE OF FIMS MICROCHANNEL PLATE DETECTOR SYSTEM (FIMS의 마이크로채널 플레이트 검출기 시스템의 특성)

  • Nam, U.W.;Rhee, J.G.;Kong, K.N.;Park, Y.S.;Jin, K.C.;Jin, H.;Park, J.H.;Yuk, I.S.;Seon, K.I.;Han, W.;Lee, D.H.;Ryu, K.S.;Min, K.W.;Edelstein, J.;Korpela, E.
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.4
    • /
    • pp.273-282
    • /
    • 2002
  • We describe some performance of the detector electronics system for the FIMS (Far-ultraviolet Imaging Spectrograph) mission. The FIMS mission to map the far ultraviolet sky uses MCP (micro-channel plate) detectors with a crossed delay line anode to record photon arrival events. FIMS has two MCP detectors, each with a ~25mm$\times$25mm active area. The unconventional anode design allows for the use of a single set of position encoding electronics for both detector fields. The centroid position of the charge cloud, generated by the photon-stimulated MCP, is determined by measuring the arrival times at both ends of the anode following amplification and external delay. The temporal response of the detector electronics system determines the readout's positional resolution for the charge centroid. High temporal resolution (<$35{\times}75$ps FWHM) and low power consumption (< 6W) were achieved for the FIMS detector electronics system.

The First Telescope in the Korean History I. Translation of Jeong's Report (한국사 최초의 망원경 I. 정두원(鄭斗源)의 "서양국기별장계(西洋國奇別狀啓)")

  • Ahn, Sang-Hyeon
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.2
    • /
    • pp.237-266
    • /
    • 2009
  • In 1631 A.D. Jeong Duwon, an ambassador of the Joseon dynasty was sent to the Ming dynasty. There he met $Jo\tilde{a}o$ Rodrigues, a Jesuit missionary, in Dengzhou of Shandong peninsula. The missionary gave the ambassador a number of results of latest European innovations. A detailed description on this event was written in 'Jeong's official report regarding a message from an European country'(西洋國奇別狀啓), which is an important literature work to understand the event. Since the document was written in classical Chinese, we make a comprehensive translation to Korean with detailed notes. According to the report, the items that Rodrigues presented include four books written in Chinese that describe European discoveries about the world, a report on the tribute of new cannons manufactured by Portuguese in Macao, a telescope, a flintlock, a Foliot-type mechanical clock, a world atlas drawn by Matteo Ricci, an astronomical planisphere, and a sun-dial. We discuss the meaning of each item in the Korean history of science and technology. In particular, Jeong's introduction is an important event in the history of Korean astronomy, because the telescope he brought was the first one to be introduced in Korean history. Even though king Injo and his associates of the Joseon dynasty were well aware of the value as military armaments of new technologies such as telescopes, cannons, and flintlocks, they were not able to quickly adopt such technologies to defend against the military threat of Jurchen. We revisit the reason in view of the general history of science and technology of east-Asian countries in the 17th century.