• Title/Summary/Keyword: astronomical telescopes

Search Result 282, Processing Time 0.04 seconds

DEEP-South: Photometric Study of NPA rotators 5247 Krolv and 14764 Kilauea

  • Lee, Hee-Jae;Kim, Myung-Jin;Moon, Hong-Kyu;Park, Jintae;Kim, Chun-Hwey;Choi, Young-Jun;Yim, Hong-Suh;Roh, Dong-Goo;Oh, Young-Seok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.55.2-56
    • /
    • 2016
  • The spin states of asteroids is regarded as an important clue to understand not only the physical property of an individual object but also the dynamical evolution of the of the population as a whole. Single asteroids can be broadly classified into two separate groups according to their rotational states; Principal Axis (PA) and Non-Principal Axis (NPA) rotators. To date, lightcurve observations have been carried out mostly for PA asteroids. However, discovery of NPA objects has recently been increased due to new observing techniques, and this is the reason why rotational properties of NPA rotators became an issue. As a DEEP-South pilot study for NPA, we selected two targets, 5247 Krolv (1982 UP6) and 14764 Kilauea (7072 P-L) considering their Principal Axis Rotation (PAR) code and visibility. Observations were made between Jan. and Feb. 2016 for 17 nights employing Korea Microlensing Telescope Network (KMTNet) 1.6 m telescopes installed at SSO and SAAO using DEEP-South TO (Target of Opportunity) mode. To obtain lightcurves, we conducted time-series photometry using Johnson-Cousins R-filter. Multi-band photometry was also made with BVRI filters at the same time, for taxonomy. Their preliminary lightcurves and approximate mineralogy will be presented.

  • PDF

DEEP-South: Automated Scheduler and Data Pipeline

  • Yim, Hong-Suh;Kim, Myung-Jin;Roh, Dong-Goo;Park, Jintae;Moon, Hong-Kyu;Choi, Young-Jun;Bae, Young-Ho;Lee, Hee-Jae;Oh, Young-Seok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.54.3-55
    • /
    • 2016
  • DEEP-South Scheduling and Data reduction System (DS SDS) consists of two separate software subsystems: Headquarters (HQ) at Korea Astronomy and Space Science Institute (KASI), and SDS Data Reduction (DR) at Korea Institute of Science and Technology Information (KISTI). HQ runs the DS Scheduling System (DSS), DS database (DB), and Control and Monitoring (C&M) designed to monitor and manage overall SDS actions. DR hosts the Moving Object Detection Program (MODP), Asteroid Spin Analysis Package (ASAP) and Data Reduction Control & Monitor (DRCM). MODP and ASAP conduct data analysis while DRCM checks if they are working properly. The functions of SDS is three-fold: (1) DSS plans schedules for three KMTNet stations, (2) DR performs data analysis, and (3) C&M checks whether DSS and DR function properly. DSS prepares a list of targets, aids users in deciding observation priority, calculates exposure time, schedules nightly runs, and archives data using Database Management System (DBMS). MODP is designed to discover moving objects on CCD images, while ASAP performs photometry and reconstructs their lightcurves. Based on ASAP lightcurve analysis and/or MODP astrometry, DSS schedules follow-up runs to be conducted with a part of, or three KMTNet telescopes.

  • PDF

OPTICAL-INFRARED AND HIGH-ENERGY ASTRONOMY COLLABORATION AT HIROSHIMA ASTROPHYSICAL SCIENCE CENTER

  • UEMURA, MAKOTO;YOSHIDA, MICHITOSHI;KAWABATA, KOJI S.;MIZUNO, TSUNEFUMI;TANAKA, YASUYUKI T.;AKITAYA, HIROSHI;UTSUMI, YOUSUKE;MORITANI, YUKI;ITOH, RYOSUKE;FUKAZAWA, YASUSHI;TAKAHASHI, HIROMITSU;OHNO, MASANORI;UI, TAKAHIRO;TAKAKI, KATSUTOSHI;EBISUDA, NANA;KAWAGUCHI, KENJI;MORI, KENSYO;OHASHI, YUMA;KANDA, YUKA;KAWABATA, MIHO;TAKATA, KOJI;NAKAOKA, TATSUYA
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.679-682
    • /
    • 2015
  • The Hiroshima Astrophysical Science Center (HASC) was founded in 2004 at Hiroshima University, Japan. The main mission of this institute is the observational study of various transient objects including gamma-ray bursts, supernovae, novae, cataclysmic variables, and active galactic nuclei by means of multi-wavelength observations. HASC consists of three divisions; the optical-infrared astronomy division, high-energy astronomy division, and theoretical astronomy division. HASC is operating the 1.5m optical-infrared telescope Kanata, which is dedicated to follow-up and monitoring observations of transient objects. The high-energy division is the key operation center for the Fermi gamma-ray space telescope. HASC and the high-energy astronomy group in the department of physical science at Hiroshima University are closely collaborating with each other to promote multi-wavelength time-domain astronomy. We report the recent activities of HASC and some science topics pursued by this multi-wavelength collaboration.

Simultaneous observations of SiO and $H_2O$ masers toward AGB and post-AGB stars

  • Yoon, Dong-Hwan;Cho, Se-Hyung;Kim, Jaeheon;Cho, Chi-Young;Yun, Youngjoo;Park, Yong-Sun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.237.2-237.2
    • /
    • 2012
  • We performed simultaneous observations of SiO v=1, 2, $^{29}SiO$ v=0, J=1-0 and $H_2O$ $6_{16}-5_{23}$ maser lines toward 132 AGB and 183 post-AGB stars in order to investigate how evolutionary characteristics from AGB to post-AGB stars appear in these two maser emissions. The observations were carried out from 2011 February to 2012 March using the Korean VLBI Network 21-m radio telescopes. We have detected SiO and/or $H_2O$ maser emission from 29 sources out of 183 post-AGB stars including 19 new detections. Of 132 AGB stars which are mainly selected based on the IRAS Point Source Catalog, we detected SiO and/or $H_2O$ maser emission from 38 stars including 18 newly detected sources. An evolutionary characteristic from AGB to post-AGB stars is discussed in IRAS two-color diagram. It is found that SiO v=2, J=1-0 maser emission without SiO v=1 maser detections was detected from 8 sources among 21 SiO detected post-AGB stars and the intensity of SiO v=2, J=1-0 maser tends to be much stronger than that of SiO v=1. We also found that for the post-AGB stars the maser detection rate of blue group sources (which have higher outflow velocities than red group) are higher than that of red group. Especially, only $H_2O$ maser emission was detected from 7 sources among 94 red group sources without SiO maser detections.

  • PDF

Candidates for the young stellar outflows: Water and Methanol masers from young stellar objects

  • Lim, Wanggi;Lyo, A-Ran;Kim, Kee-Tae;Byun, Do-Young
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.236.1-236.1
    • /
    • 2012
  • We conducted simultaneous 22GHz water maser and 44GHz class I methanol maser surveys of newly-identified 282 H2 emission features from the $2.122{\mu}m$ H2 narrowband image survey in the Galactic plane (UWISH2 project) using Korea VLBI Network (KVN) 21-m radio telescopes. We detected 16 and 13 new water and methanol maser sources, respectively. This result indicates that at least ~5% of the H2 emission features originate from young stellar objects (YSOs) that are in the right physical condition to produce the water and methanol masers. The masers are closely related to the current outflow activities in the Galactic plane. The power sources of these 23 diffused/collimated H2 emission features (six sources are detected for both masers) are likely to be intermediate-to high-mass YSOs, based on a comparison with the maser luminosities of other well-studied YSOs. Both maser velocities are mostly close to their own systemic velocities within 5 km/s, even though water masers generally show larger variabilities in the line intensities, velocities, and shapes than methanol masers. We also discovered three new water maser sources with high-velocity components: ~25 km/s red-shifted CMHO019, ~50 km/s blue-shifted CMHO132, and ~120 km/s blue-shifted CMHO182. In particular, we propose that the dominant blue-shifted water maser of CHMO182 could become a unique laboratory for the study of high-mass stellar jet and their accelerations.

  • PDF

The Infrared Medium-deep Survey. VI. Discovery of Faint Quasars at z ~ 5 with a Medium-band-based Approach

  • Kim, Yongjung;Im, Myungshin;Jeon, Yiseul;Kim, Minjin;Pak, Soojong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.37.1-37.1
    • /
    • 2019
  • The faint quasars with M1450 > -24 mag are known to hold the key to the determination of the ultraviolet emissivity for the cosmic reionization. But only a few have been identified so far because of the limitations on the survey data. Here we present the first results of the z ~ 5 faint quasar survey with the Infrared Medium-deep Survey (IMS), which covers ${\sim}100deg^2$ areas in J band to the depths of $J_{AB}$ ~ 23 mag. To improve selection methods, the medium-band follow-up imaging has been carried out using the SED camera for QUasars in Early uNiverse (SQUEAN) on the Otto Struve 2.1 m Telescope. The optical spectra of the candidates were obtained with 8 m class telescopes. We newly discovered 10 quasars with -25 < $M_{1450}$ < -23 at z ~ 5, among which three have been missed in a previous survey using the same optical data over the same area, implying the necessity for improvements in high-redshift faint quasar selection. We derived photometric redshifts from the medium-band data and found that they have high accuracies of ${\langle}{\mid}{\Delta}z{\mid}/(1+z){\rangle}=0.016$. The medium-band-based approach allows us to rule out many of the interlopers that contaminate ${\geq}20%$ of the broadband-selected quasar candidates. These results suggest that the medium-band-based approach is a powerful way to identify z ~ 5 quasars and measure their redshifts at high accuracy (1%-2%). It is also a cost-effective way to understand the contribution of quasars to the cosmic reionization history.

  • PDF

The Geometric Albedo of (4179) Toutatis

  • Bach, Yoonsoo P.;Ishiguro, Masateru;Jin, Sunho;Yang, Hongu;Moon, Hong-Kyu;Choi, Young-Jun;JeongAhn, Youngmin;Kim, Myung-Jin;Kwak, Sungwon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.44.4-45
    • /
    • 2018
  • (4179) Toutatis (Toutatis hereafter) is one of the Near-Earth Asteroids which has been studied most rigorously not only via ground-based photometric, spectroscopic, polarimetric, and radar observations, but also via the in-situ observation by the Chinese Chang'e-2 spacecraft. However, one of the most fundamental physical properties, the geometric albedo, is less determined. In order to derive the reliable geometric albedo and further study the physical condition on the surface, we made photometric observations of Toutatis near the opposition (i.e., the opposite direction from the Sun). We thus observed it for four days on 2018 April 7-13 using three 1.6-m telescopes, which consist of the Korean Microlensing Telescope Network (KMTNet). Since the asteroid has a long rotational period (5.38 and 7.40 days from Chang'e-2, Zhao et al., 2015), the continuous observations with KMTNet matches the purpose of our photometric study of the asteroid. The observed data cover the phase angle (Sun-asteroid-observer's angle) of 0.65-2.79 degree. As a result, we found that the observed data exhibited the magnitude changes with an amplitude of ~0.8 mag. We calculated the time-variable geometrical cross-section using the radar shape model (Hudson & Ostro 1995), and corrected the effect from the observed data to derive the geometric albedo. In this presentation, we will present our photometric results. In addition, we will discuss about the regolith particles size together with the polarimetric properties based on the laboratory measurements of albedo-polarization maximum.

  • PDF

THE GEOMETRIC ALBEDO OF (4179) TOUTATIS ESTIMATED FROM KMTNET DEEP-SOUTH OBSERVATIONS

  • Bach, Yoonsoo P.;Ishiguro, Masateru;Jin, Sunho;Yang, Hongu;Moon, Hong-Kyu;Choi, Young-Jun;JeongAhn, Youngmin;Kim, Myung-Jin;Kwak, SungWon
    • Journal of The Korean Astronomical Society
    • /
    • v.52 no.3
    • /
    • pp.71-82
    • /
    • 2019
  • We derive the geometric albedo of a near-Earth asteroid, (4179) Toutatis, to investigate its surface physical conditions. The asteroid has been studied rigorously not only via ground-based photometric, spectrometric, polarimetric, and radar observations but also via in situ observation by the Chinese Chang'e-2 space probe; however, its geometric albedo is not well understood. We conducted V-band photometric observations when the asteroid was at opposition in April 2018 using the three telescopes in the southern hemisphere that compose the Korea Microlensing Telescope Network (KMTNet). The observed time-variable cross section was corrected using the radar shape model. We find that Toutatis has a geometric albedo $p_V=0.185^{+0.045}_{-0.039}$, which is typical of S-type asteroids. We compare the geometric albedo with archival polarimetric data and further find that the polarimetric slope-albedo law provides a reliable estimate for the albedo of this S-type asteroid. The thermal infrared observation also produced similar results if the size of the asteroid is updated to match the results from Chang'e-2. We conjecture that the surface of Toutatis is covered with grains smaller than that of the near-Sun asteroids including (1566) Icarus and (3200) Phaethon.

Multi-Messenger Observation of Gravitational Wave Source GW170817

  • Im, Myungshin;Kim, Joonho;Choi, Changsu;Lim, Gu;Lee, Chung-Uk;Kim, Seung-Lee;Lee, Mok Hyung;Yoon, Yongmin;Lee, Seong-Kook;Ko, Jongwan;Shim, Hyunjin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.31.3-31.3
    • /
    • 2018
  • On August 17th 2017, for the first time in the history, the gravitational wave (GW) detectors recorded signals coming from the merger of two neutron stars. This event was named as GW170817, and more interestingly, gamma-ray emission was detected 2 seconds after the gravitational wave signal, and 11 hours later, telescopes in Chile identified that the GW signal came from the NGC 4993 galaxy at the distance of about 40 Mpc. This is again the first time that electromagnetic (EM) signals are detected for a GW source. The follow-up observations by astronomers all around the world, including our group in Korea, successfully identified the optical emission as the kilonova, the elusive optical/NIR counterpart that has been proposed to originate from a neutron star merger. This whole event started the new era of astronomy, so-called the "multi-messenger astronomy", where the combined information from GW and EM radiation reveals an unprecedented view of the universe. In this talk, I summarize this exciting event, and describe the efforts by Korean astronomers that have led to important discoveries about the kilonova and the host galaxy properties, and finally provide the future prospects.

  • PDF

OGLE-2017-BLG-1049: ANOTHER GIANT PLANET MICROLENSING EVENT

  • Kim, Yun Hak;Chung, Sun-Ju;Udalski, A.;Bond, Ian A.;Jung, Youn Kil;Gould, Andrew;Albrow, Michael D.;Han, Cheongho;Hwang, Kyu-Ha;Ryu, Yoon-Hyun;Shin, In-Gu;Shvartzvald, Yossi;Yee, Jennifer C.;Zang, Weicheng;Cha, Sang-Mok;Kim, Dong-Jin;Kim, Hyoun-Woo;Kim, Seung-Lee;Lee, Chung-Uk;Lee, Dong-Joo
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.6
    • /
    • pp.161-168
    • /
    • 2020
  • We report the discovery of a giant exoplanet in the microlensing event OGLE-2017-BLG-1049, with a planet-host star mass ratio of q = 9.53 ± 0.39 × 10-3 and a caustic crossing feature in Korea Microlensing Telescope Network (KMTNet) observations. The caustic crossing feature yields an angular Einstein radius of θE = 0.52 ± 0.11 mas. However, the microlens parallax is not measured because the time scale of the event, tE ≃ 29 days, is too short. Thus, we perform a Bayesian analysis to estimate physical quantities of the lens system. We find that the lens system has a star with mass Mh = 0.55+0.36-0.29 M⊙ hosting a giant planet with Mp = 5.53+3.62-2.87 MJup, at a distance of DL = 5.67+1.11-1.52 kpc. The projected star-planet separation is a⊥ = 3.92+1.10-1.32 au. This means that the planet is located beyond the snow line of the host. The relative lens-source proper motion is μrel ~ 7 mas yr-1, thus the lens and source will be separated from each other within 10 years. After this, it will be possible to measure the flux of the host star with 30 meter class telescopes and to determine its mass.