• Title/Summary/Keyword: astronomical space concept

Search Result 34, Processing Time 0.023 seconds

Development of HTE-STEAM Constellation Education Program Using Astronomical Teaching Aid: Focused on Cultivating Core Competencies for Future Society through the Concept of Space and Time (천문 교구를 활용한 HTE-STEAM 별자리 교육 프로그램 개발 연구 : 시공간 개념을 통한 미래 사회 핵심역량 함양을 중심으로)

  • Ahra Cho;Yonggi Kim
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.17 no.1
    • /
    • pp.34-48
    • /
    • 2024
  • With the global rise in interest in competency-based education, the Ministry of Education of the Republic of Korea outlined six core competencies in the 2015 revised curriculum, essential for future society's 'creative and convergent talent'. This study introduces an HTE-STEAM constellation education program designed to develop the core competencies outlined in the 2015 revised curriculum and address the limitations of hands-on astronomy education. The program's effectiveness was assessed through a pilot test. The program was implemented at G Library, an out-of-school education site in Cheongju-si, Chungcheongbuk-do, targeting students from 3rd to 6th grade. The study's results include: First, the HTE-STEAM program significantly impacted all aspects of the STEAM attitude test except for 'self-concept', particularly influencing 'science and engineering career choice', 'consideration', and 'communication'. Thus, it has led to positive outcomes in the cultivation of future society's core competencies, including 'creative thinking skills', 'communication skills', and 'community skills'. Secondly, the HTE-STEAM constellation education program, despite covering the challenging concept of spacetime, was deemed easy by many students. Observations of students applying the spatial concepts they learned by using teaching aids suggest that the program was effective in enhancing students' understanding of the spatial structure of the sky and the universe. Additionally, this program aligns with the 2022 curriculum's updated standards for understanding the sky's spatial structure. Consequently, the HTE-STEAM constellation education program positively cultivates future society's core competencies and serves as a valuable complement to night observation practices in schools.

The Effects of Astronomical Animation Module on Earth Science Gifted Students's Conceptual Change of Diurnal Motion (애니메이션 모듈이 지구과학 영재학생들의 별의 일주운동 개념 변화에 미치는 효과)

  • Cho, Kyu-Seong;Chung, Duk-Ho;Kim, Bo-Hee;Park, Kyeong-Su;Park, Kyeong-Jin
    • Journal of the Korean earth science society
    • /
    • v.32 no.2
    • /
    • pp.200-211
    • /
    • 2011
  • The purpose of this study is to investigate the effects of astronomical animation module on students' conceptual change regarding the concepts of diurnal motion of stars. Four students participated in this study, who never learned about the diurnal motion of stars. An animation module was developed by using Flash MX to readily understand the concept of space. In addition, we inserted a teacher's voice with supplementary materials into the animation module to help students learn individually. The animation module was comprised of the movement of the Earth, the Moon and the planet. The earth science gifted students' preconception on diurnal motion of stars was analyzed with pre-test using questionnaires and interviews. After the instruction with animation module, the effect of conceptual change was examined by comparing pre and post-test. The results indicated that three students correctly presented about the motion of the star by all directions in middle latitude. Four students showed their understanding that stars travelled straight in all directions. Finally, all of four students whose preconceptions were that the star rotated perpendicularly showed the conceptual change of diurnal motion that the star traveled diagonally.

A STUDY ON THE JUJEON OF AUTOMATIC CLEPSYDRA IN EARLY JOSEON DYNASTY (조선 전기 자동물시계의 주전(籌箭) 연구)

  • YUN, YONG-HYUN;KIM, SANG HYUK;MIHN, BYEONG-HEE;OH, KYONG TAEK
    • Publications of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.65-78
    • /
    • 2021
  • Jagyeokru, an automatic striking water clock described in the Sejong Sillok (Veritable Records of King Sejong) is essentially composed of a water quantity control device and a time-signal device, with the former controlling the amount or the flow rate of water and the latter automatically informing the time based on the former. What connects these two parts is a signal generating device or a power transmission device called the 'Jujeon' system, which includes a copper rod on the float and ball-racked scheduled plates. The copper products excavated under Gongpyeong-dong in Seoul include a lot of broken plate pieces and cylinder-like devices. If some plate pieces are put together, a large square plate with circular holes located in a zigzag can be completed, and at the upper right of it is carved 'the first scheduled plate (一箭).' Cylinder-like devices generally 3.8 cm in diameter are able to release a ball, and have a ginkgo leaf-like screen fixed on the inner axis and a bird-shaped hook of which the leg fixes another axis and the beak attaches to the leaf side. The lateral view of this cylinder-like device appears like a trapezoid and mounts an iron ball. The function of releasing a ball agrees with the description of Borugak Pavilion, where Jagyeokru was installed, written by Kim Don (1385 ~ 1440). The other accounts of Borugak Pavilion's and Heumgyeonggak Pavilion's water clocks describe these copper plates and ball releasing devices as the 'Jujeon' system. According to the description of Borugak Pavilion, a square wooden column has copper plates on the left and right sides the same height as the column, and the left copper plate has 12 drilled holes to keep the time of a 12 double-hours. Meanwhile, the right plate has 25 holes which represent seasonal night 5-hours (Kyeong) and their 5-subhours (Jeom), not 12 hours. There are 11 scheduled plates for seasonal night 5-hours made with copper, which are made to be attached or detached as the season. In accordance with Nujutongui (manual for the operation of the yardstick for the clepsydra), the first scheduled plate for the night is used from the winter solstice (冬至) to 2 days after Daehan (大寒), and from 4 days before Soseol (小雪) to a day before the winter solstice. Besides the first scheduled plate, we confirm discovering a third scheduled plate and a sixth scheduled plate among the excavated copper materials based on the spacing between holes. On the other hand, the width of the scheduled plate is different for these artifacts, measured as 144 mm compared to the description of the Borugak Pavilion, which is recorded as 51 mm. From this perspective, they may be the scheduled plates for the Heumgyeonggak Ongru made in 1438 (or 1554) or for the new Fortress Pavilion installed in Changdeokgung palace completed in 1536 (the 31st year of the reign of King Jungjong) in the early Joseon dynasty. This study presents the concept of the scheduled plates described in the literature, including their new operating mechanism. In addition, a detailed model of 11 scheduled plates is designed from the records and on the excavated relics. It is expected that this study will aid in efforts to restore and reconstruct the automatic water clocks of the early Joseon dynasty.

OPERATIONAL MODEL OF TIME-KEEPING SYSTEMS OF HEUMGYEONGGAK-NU (흠경각루 시보시스템의 작동모델)

  • KIM, SANG HYUK;YUN, YONG-HYUN;MIHN, BYEONG-HEE;LEEM, BYONG GUEN;YOON, MYUNG KYOON;LEEM, BYONG SI
    • Publications of The Korean Astronomical Society
    • /
    • v.34 no.3
    • /
    • pp.31-40
    • /
    • 2019
  • We study the internal structure under the artificial mountain of Heumkyeonggak-nu, a Korean water-powered clock in the early Joseon dynasty. All the puppets on the artificial mountain are driven by the rotational force generated by the water wheel at their designated time. We design a model that work with three parts of the artificial mountain. At the upper part of the artificial mountain to the east, west, north and south, there are four puppets called the Four Mystical Animal Divinity and four ladies called the Jade Lady respectively. The former rotates a quarter every double hour and the latter rings the bell every hour. In the middle part of this mountain is the timekeeping platform with four puppets; the Timekeeping Official (Hour Jack), the Bell-, Drum-, and Gong-Warriors. The Hour Jack controls time with three warriors each hitting his own bell, drum, and gong, respectively. In the plain there are 12 Jade Lady puppets (the lower ladies) combined with 12 Oriental Animal Deity puppets. In his own time a lady doll pops out of the hole and her animal doll gets up. Two hours later, the animal deity lies down and his lady hides in the artificial plain. These puppets are regularly moved by the signal such as iron balls, bumps, levers, and so on. We can use balls and bumps to explain the concept of the Jujeon system. Iron balls were used to manipulate puppets of the timekeeping mechanism in Borugak-nu, another Korean water-powered clock in Joseon dynasty, which was developed earlier than Heumgyeonggak-nu. According to the North Korea's previous study (Choi, 1974), it is obvious that bumps were used in the internal structure of Heumgyeonggak-nu. In 1669, The armillary clock made by Song, I-young was also utilized bumps. Finally we presented mock-ups of three timekeeping systems.