• 제목/요약/키워드: astronomical instrumentation

검색결과 104건 처리시간 0.026초

CURRENT STATUS OF THE INSTRUMENTS, INSTRUMENTATION AND OPEN USE OF OKAYAMA ASTROPHYSICAL OBSERVATORY

  • YOSHIDA MICHITOSHI
    • 천문학회지
    • /
    • 제38권2호
    • /
    • pp.117-120
    • /
    • 2005
  • Current instrumentation activities and the open user status of Okayama Astrophysical Observatory (OAO) are reviewed. There are two telescopes in operation and one telescope under reforming at OAO. The 188cm telescope is provided for open use for more than 200 nights in a year. The typical over-subscription rate of observation proposals for the 188cm telescope is ${\~}$ 1.5 - 2. The 50cm telescope is dedicated to $\gamma$-ray burst optical follow-up observation and is operated in collaboration with Tokyo Institute of Technology. The 91cm telescope will become a new very wide field near-infrared camera in two years. The high-dispersion echelle spectrograph (HIDES) is the current primary instrument for the open use of the 188cm telescope. Two new instruments, an infrared multi-purpose camera (ISLE) and an optical low-dispersion spectrograph (KOOLS), are now under development. They will be open as common use instruments in 2006.

MICROTHERMAL INSTRUMENT FOR MEASURING SURFACE LAYER SEEING

  • Li, Xue-Bao;Zheng, Yan-Fang;Deng, Lin Hua;Xu, Guang
    • 천문학회지
    • /
    • 제45권1호
    • /
    • pp.19-24
    • /
    • 2012
  • Microthermal fluctuations are introduced by atmospheric turbulence very near the ground. In order to detect microthermal fluctuations at Fuxian Solar Observatory (FSO), a microthermal instrument has been developed. The microthermal instrument consists of a microthermal sensor, which is based on a Wheatstone bridge circuit and uses fine tungsten filaments as resistance temperature detectors, an associated signal processing unit, and a data collection, & communication subsystem. In this paper, after a brief introduction to surface layer seeing, we discuss the instrumentation behind the microthermal detector we have developed and then present the results obtained. The results of the evaluation indicate that the effect of the turbulent surface boundary layer to astronomical seeing would become sufficiently small when installing a telescope at a height of 16m or higher from the ground at FSO.

JAPAN 8M TELESCOPE: SUBARU PROJECT

  • IYE MASANORI
    • 천문학회지
    • /
    • 제29권spc1호
    • /
    • pp.371-374
    • /
    • 1996
  • An updated project status review of the Japan 8m telescope, Subaru, scheduled for its first light in the second quater of 1998 atop Mauna Kea is given.

  • PDF

Current and Future instrumentation at the Canada-France-Hawaii Telescope

  • Devost, Daniel
    • 천문학회보
    • /
    • 제38권1호
    • /
    • pp.67.1-67.1
    • /
    • 2013
  • The CFHT currently has three instruments running in QSO mode and one in Classical mode. I will touch on the capabilities of these instruments and give an update on the future instrumentation at CFHT. One new instrument, SITELLE, is scheduled to be delivered to CFHT at the end of the year. Another instrument which is a proof of concept is GRACES which should see first light during the summer. I will also give an update on the Dome Venting project and the Next generation CFHT.

  • PDF

THE AUSTRALIA TELESCOPE NATIONAL FACILITY

  • EDWARDS, PHILIP G.
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.655-657
    • /
    • 2015
  • The Australia Telescope National Facility (ATNF) consists of the Parkes and Mopra radio telescopes, and the Australia Telescope Compact Array, with the first elements of the wide-field Australian Square Kilometer Array Pathfinder (ASKAP), currently being commissioned. The capabilities of these facilities are described.

보현산천문대 중분산분광기의 성능 분석 (PERFORMANCE TEST OF THE BOAO MEDIUM DISPERSION SPECTROGRAPH (MDS))

  • 김강민;김여정;윤태석
    • 천문학회지
    • /
    • 제34권1호
    • /
    • pp.41-45
    • /
    • 2001
  • We tested the characteristics of the BOAO Medium Dispersion Spectrograph (MDS) such as the CCD capabilities, wavelength shift by gravity direction variation, slit illumination function and efficiency. Then we calculated the appropriate exposure time to obtain the given S/N ratio for several given magnitudes. Also the remaining problems to be improved were discussed.

  • PDF

19세기 남병철 『의기집설(儀器輯說)』 혼천의 용법 분석 (ANALYSIS OF THE USAGE OF NAM BYEONG-CHEOL'S ARMILLARY SPHERE IN UIGIJIPSEOL IN THE 19TH CENTURY)

  • 최홍순;김상혁;민병희;남경욱;유경한;김용기
    • 천문학논총
    • /
    • 제39권1호
    • /
    • pp.13-26
    • /
    • 2024
  • The armillary sphere, an astronomical observation device embodying the Orbital Heaven Theory of the Later Han Dynasty in China, holds both historical and scientific significance. It has been produced in various forms by many individuals since its inception in the era of King Sejong in the Joseon Dynasty. A prominent figure in this field was Nam Byeong-cheol (南秉哲, 1817-1863), known for his work 'Uigijipseol' (儀器輯說), published in 1859, which detailed the history, production methods, and usage of the armillary sphere. This text particularly highlights 21 applications of the armillary sphere, divided into 33 measurements, covering aspects like installation, time, and positional measurements, supplemented with explanations of spherical trigonometry. Despite numerous records of the armillary sphere's design during the Joseon Dynasty, detailed usage information remains scarce. In this study, the 33 measurements described in 'Uigijipseol' (儀器輯說) were systematically classified into six for installation, nineteen for position measurement, seven for time measurement, and one for other purposes. Additionally, the measurement methods were analyzed and organized by dividing them into the ecliptic ring, moving equatorial ring, and fixed equatorial ring of the armillary sphere. In other words, from a modern astronomical perspective, the results of schematization for each step were presented by analyzing it from the viewpoint of longitude, right ascension, and solar time. Through the analysis of Nam's armillary sphere, this study not only aims to validate the restoration model of the armillary sphere but also suggests the potential for its use in basic astronomical education based on the understanding of the 19th-century Joseon armillary sphere.

천체의 광역 관측을 위한 CCD 카메라 개발 (DEVELOPMENT OF CCD CAMERA FOR OBSERVING WIDE FIELDS)

  • 유영삼;박수종;김민진;이성호;변용익;천무영;한원용
    • 천문학논총
    • /
    • 제16권1호
    • /
    • pp.43-47
    • /
    • 2001
  • We developed a CCD camera that can observe wide fields on the sky. We tested the field of views using various lenses. For cooling the CCD chip, we used a thermoelectric cooling device and tested the cooling efficiency. This camera will continuously observe a part of the sky. The data from the camera will be used to decide the current weather condition by the real-time star counting program (SCount) which will be developed later.

  • PDF

Fabrication of Freeform Aluminum mirrors for Wide Field Infrared Telescopes

  • Jeong, Byeongjoon;Gwak, Jeongha;Pak, Soojong;Kim, Geon Hee;Lee, Kwang Jo;Park, Junbeom;Lee, Hye-In;Park, Woojin;Ji, Tae-Geun
    • 천문학회보
    • /
    • 제42권1호
    • /
    • pp.57.3-58
    • /
    • 2017
  • Single Point Diamond Turning (SPDT) is a cost-effective technique to fabricate metallic mirrors. In particular, the servo-assisted diamond turning option is highly useful for the fabrication of freeform surfaces. However, the SPDT process leaves periodic tool marks on machined mirror surfaces, leading to undesirable diffraction effect, as well as the deviation of input beam. In order to solve this problem, we propose new SPDT machining conditions to minimize tool marks. We will also show the results from optical measurement and Power Spectral Density (PSD) analysis to evaluate the expectable performance for applications in wide field infrared telescopes.

  • PDF

원대(元代)와 세종대(世宗代) 자동 물시계 시보시스템 비교 (COMPARISON OF THE TIME-SIGNAL SYSTEM OF AUTOMATIC WATER CLOCKS DURING THE YUAN DYNASTY AND THE KING SEJONG ERA OF THE JOSEON DYNASTY)

  • 윤용현;김상혁;민병희;임병근
    • 천문학논총
    • /
    • 제39권1호
    • /
    • pp.1-12
    • /
    • 2024
  • In this study, we investigated the time signal devices of Deungnu (circa 1270) and Gungnu (1354), the water clocks produced during the Yuan Dynasty (1271-1368). These clocks influenced Heumgyeonggaknu (1438) of the Joseon Dynasty (1392-1910), exemplifying the automatic water clocks of the Yuan Dynasty. Deungnu, Gungnu, and Heumgyeonggaknu can be considered as automatic mechanical clocks capable of performances. The Jega-Yeoksang-Jip (Collection of Calendrical and Astronomical Theories of Various Chinese Masters) contains records of Deungnu extracted from the History of the Yuan Dynasty. We interpreted these records and analyzed reproduction models and technical data previously produced in China. The time signal device of Deungnu featured a four-story structure, with the top floor displaying the four divine constellations, the third floor showcasing models of these divinities, the second floor holding 12-h jacks and a 100-Mark ring, and the first floor with four musicians and a 100-Mark Time-Signal Puppet providing a variety of visual attractions. We developed a 3D model of Deungnu, proposing two possible mechanical devices to ensure that the Time-Signal Puppet simultaneously pointed to the 100-Mark graduations in the east, west, south, and north windows: one model reduced the rotation ratio of the 100-Mark ring to 1/4, whereas the other model maintained the rotation ratio using four separate 100-Mark rings. The power system of Deungnu was influenced by Suunuisangdae (the water-driven astronomical clock tower) of the Northern Song Dynasty (960-1127); this method was also applied to Heumgyeonggaknu in the Joseon Dynasty. In conclusion, these automatic water clocks of East Asia from the 13th to 15th centuries symbolized creativity and excellence, representing scientific devices that were the epitome of clock-making technology in their times.