• 제목/요약/키워드: asteroid

검색결과 125건 처리시간 0.027초

ORBITAL ENERGY DURING THE EVOLUTION OF THE ORBITAL DYNAMICS OF ASTEROID 4179 TOUTATIS

  • SOEGIARTINI, ENDANG
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.69-71
    • /
    • 2015
  • In our previous work, we investigated the orbital dynamics of Asteroid 1934 CT (or 1989 AC or 4179 Toutatis) from epoch 2012-Jul-24 (JDE2456132.5) using the Mercury program package. Asteroid 4179 Toutatis has an Earth and Mars crossing orbit with semimajor axis a = 2.5292 AU and eccentricity e = 0.6294, and therefore the perihelion distance is q = 0.9373 AU and the aphelion distance is Q = 4.1211 AU. After more than 300,000 years, asteroid 4179 Toutatis will escape from the Solar System, but during this time, it will have close-encounters with other planets from Venus to Uranus. As a continuation of this project, we investigated its energy changes in each close encounter. We also determine the energy of this asteroid when it escapes from the Solar System. The result is that during its orbital evolution, the energy of this asteroid changes and gives us negative, zero and positive values.

Spacecraft Guidance Algorithms for Asteroid Intercept and Rendezvous Missions

  • Hawkins, Matt;Guo, Yanning;Wie, Bong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권2호
    • /
    • pp.154-169
    • /
    • 2012
  • This paper presents a comprehensive review of spacecraft guidance algorithms for asteroid intercept and rendezvous missions. Classical proportional navigation (PN) guidance is reviewed first, followed by pulsed PN guidance, augmented PN guidance, predictive feedback guidance, Lambert guidance, and other guidance laws based on orbit perturbation theory. Optimal feedback guidance laws satisfying various terminal constraints are also discussed. Finally, the zero-effort-velocity (ZEV) error, analogous to the well-known zero-effort-miss (ZEM) distance, is introduced, leading to a generalized ZEM/ZEV guidance law. These various feedback guidance laws can be easily applied to real asteroid intercept and rendezvous missions. However, differing mission requirements and spacecraft capabilities will require continued research on terminal-phase guidance laws.

Taxonomic Classification of Asteroids Using KMTNet Data to Identify Asteroid Families

  • Choi, Sangho;Chiang, Howoo;Sohn, Young-Jong
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.83.1-83.1
    • /
    • 2019
  • Identifying asteroid families, which are groups of asteroids with similar orbital properties, is important for understanding the formation and evolution of the solar system, and probing the origins of Near-Earth Objects (NEOs). Although asteroid taxonomy can be used to identify and refine asteroid families, there are numerous asteroids which are not taxonomically classified yet. Korea Microlensing Telescope Network (KMTNet) can be useful to investigate types of that asteroids, because the telescope can observe a number of asteroids at once by its large field of view. Using KMTNet data, we confirmed that the taxonomic classification of the asteroids is possible by plotting color-color diagram. There is a clear division between C-type and S-type, but ambiguous division between C-type and X-type. In the future, we will observe and classify asteroids which are not classified yet and utilize the data to identify and refine asteroid families.

  • PDF

The Double Asteroid Redirection Test: NASA's First Planetary Defense Test Mission

  • Rivkin, Andrew S.
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.35.4-35.4
    • /
    • 2021
  • The Double Asteroid Redirection Test (DART) is NASA's first planetary defense test mission, designed to test the kinetic deflector technique by crashing into an asteroid and changing its orbit. DART's launch window opens in November, 2021, with arrival at its target less than a year later in late September or early October 2022. The target of the DART spacecraft is the moonlet Dimorphos, a 150-m moonlet orbiting the 780-m asteroid Dimorphos. By changing the orbit of Dimorphos around Didymos, the results can be detected much more easily than changing the orbit of an asteroid around the Sun. I will discuss what we know about Didymos and Dimorphos, the plans for the DART mission, the expected results, and how DART is important for planetary defense in general.

  • PDF

The phase angle dependences of Reflectance on Asteroid (25143) Itokawa from the Hayabusa Spacecraft Multi-band Imaging Camera(AMICA)

  • Lee, Mingyeong;Ishiguro, Masateru
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.61.3-62
    • /
    • 2015
  • Remote-sensing observation is one of the observation methods that provide valuable information, such as composition and surface physical conditions of solar system objects. The Hayabusa spacecraft succeeded in the first sample returning from a near-Earth asteroid, (25143) Itokawa. It has established a ground truth technique to connect between ordinary chondrite meteorites and S-type asteroids. One of the scientific observation instruments that Hayabusa carried, Asteroid Multi-band Imaging Camera(AMICA) has seven optical-near infrared filters (ul, b, v, w, x, p, and zs), taking more than 1400 images of Itokawa during the rendezvous phase. The reflectance of planetary body can provide valuable information of the surface properties, such as the optical aspect of asteroid surface at near zero phase angle (i.e. Sun-asteroid-observer's angle is nearly zero), light scattering on the surface, and surface roughness. However, only little information of the phase angle dependences of the reflectance of the asteroid is known so far. In this study, we investigated the phase angle dependences of Itokawa's surface to understand the surface properties in the solar phase angle of $0^{\circ}-40^{\circ}$ using AMICA images. About 700 images at the Hayabusa rendezvous phase were used for this study. In addition, we compared our result with those of several photometry models, Minnaert model, Lommel-Seeliger model, and Hapke model. At this conference, we focus on the AMICA's v-band data to compare with previous ground-based observation researches.

  • PDF

Regional variations of optical properties on asteroid (25143) Itokawa taken with the Asteroid Multi-band Imaging Camera (AMICA) on-board the Hayabusa spacecraft

  • Lee, Mingyeong;Ishiguro, Masateru
    • 천문학회보
    • /
    • 제40권2호
    • /
    • pp.45.1-45.1
    • /
    • 2015
  • Hayabusa is the JAXA's space mission that succeeded in sample-return from S-type asteroid (25143) Itokawa. During the rendezvous phase, more than a thousand of images were taken with the Asteroid Multi-band Imaging Camera (AMICA). It is valuable to study the regional variation of the optical properties on the asteroid using these images to know the generality and uniqueness of the returned samples. In addition, AMICA images are important in that they provide unique data set at low phase angle (i.e Sun-Itokawa-AMICA's angle) that have not been explored in the previous asteroidal missions. At the previous conference (2015 KAS spring meeting), we introduced our preliminary data analysis of AMICA data without considering the shape model of Itokawa and mentioned. In this study, we present a new result obtained through further analysis, taking account of the shape model of the asteroid. We thus utilized "plate_renderer" tool to derive Hapke model parameters at different terrains. It is found that the opposition amplitude (parameter B0) is consistent with those of the other S-type asteroids while the opposition width (parameter h) is significantly narrower than those of the other S-type asteroids. At this conference, we plan to describe the regional variation of photometric properties on Itokawa.

  • PDF

Opposition effect on asteroid (25143) Itokawa taken with the Asteroid Multi-band Imaging Camera(AMICA)

  • Lee, Mingyeong;Ishiguro, Masateru
    • 천문학회보
    • /
    • 제41권2호
    • /
    • pp.51.2-51.2
    • /
    • 2016
  • Hayabusa, the Japanese asteroid sample returning mission, acquired more than 1400 scientific images of its target asteroid (25143) Itokawa using the Asteroid Multi-band Imaging Camera (AMICA). It took images at a wide coverage of the phase angle a (Sun-Itokawa-Hayabusa) from $a{\sim}0^{\circ}$ to ${\sim}35^{\circ}$, providing a unique opportunity for studying the opposition effect (a sharp surge in brightness of asteroidal surface). Here we present a study of the opposition effect on Itokawa using the AMICA multi-band data. We found that (1) the opposition strength near the opposition is independent of the incident/emission angles of the light, also (2) it weakly depends on the wavelength showing the strongest surge around 0.7 um, and (3) the reflectance increases linearly at a>$1.5^{\circ}$ while nonlinearly at a<$1.5^{\circ}$ as approaching the opposition point. In particular, we noticed that the increasing rate has a correlation with the reflectance in the nonlinear domain whereas no detectable correlation with the reflectance in the linear domain. From these results, we conjecture that the coherent backscattering opposition effect is a dominant mechanism for the nonlinear opposition surge at a<$1.5^{\circ}$ while shadow hiding opposition effect is responsible for the linear opposition surge at a>$1.5^{\circ}$.

  • PDF

Landing Dynamic and Key Parameter Estimations of a Landing Mechanism to Asteroid with Soft Surface

  • Zhao, Zhijun;Zhao, JingDong;Liu, Hong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권3호
    • /
    • pp.237-246
    • /
    • 2013
  • It is of great significance to utilize a landing mechanism to explore an asteroid. A landing mechanism named ALISE (Asteroid Landing and In Situ Exploring) for asteroid with soft surface is presented. The landing dynamic in the first turning stage, which represents the landing performance of the landing mechanism, is built by a Lagrange equation. Three key parameters can be found influencing the landing performance: the retro-rocket thrust T, damping element damping $c_1$, and cardan element damping $c_2$. In this paper, the retro-rocket thrust T is solved with considering that the landing mechanism has no overturning in extreme landing conditions. The damping element damping c1 is solved by a simplified dynamic model. After solving the parameters T and $c_1$, the cardan element damping $c_2$ is calculated using the landing dynamic model, which is built by Lagrange equation. The validities of these three key parameters are tested by simulation. The results show a stable landing, when landing with the three estimated parameters T, $c_1$, and $c_2$. Therefore, the landing dynamic model and methods to estimate key parameters are reasonable, and are useful for guiding the design of the landing mechanism.

Photometric study of Main-belt asteroid (298) Baptistina

  • Kim, Dong-Heun;Kim, Myung-Jin;Lee, Hee-Jae;Kaplan, Murat;Erece, Orhan;Kim, Taewoo;Yoon, Joh-Na;Marciniak, Anna;Moon, Hong-Kyu;Choi, Young-Jun;Kim, Yonggi
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.48.1-48.1
    • /
    • 2021
  • The Main-belt asteroid (298) Baptistina (hereafter 'Baptistina') is regarded as an X- (or C-) type asteroid and the largest member of the Baptistina asteroid family. Its basic physical properties play an important role in understanding the rotational evolution and orbital dynamics of the Baptistina family. In this study, we determined the physical characteristics of Baptistina from the optical observations. We conducted BVRI and R band photometric observations from 2017 to 2021 for a total of 47 nights using the 0.5 - 2.0 m-class telescopes. As a result, the color indices of Baptistina were derived as, , and ; this result is consistent with the previous classification of Baptistina as an X- (or C-) type. We also determined absolute magnitude () and slope parameter () by using a simplified version of the IAU H & G function (Bowell et al. 1989) are mag and respectively. We calculated the effective radius of Baptistina of km considering the visual geometric albedo of 0.131 from the NEOWISE data. Using the light-curve inversion method, the sidereal rotation period of 16.224235 h and the 3D shape model with a pole orientation (,) were also determined. In this presentation we will introduce our observations and results, and also discuss about the physical properties of Baptistina asteroid family members such as color indices.

  • PDF

Spin and shape analysis for the Mars-crossing asteroid 2078 Nanking

  • Choi, Jung-Yong;Kim, Myung-Jin;Choi, Young-Jun;Yoon, Tae Seog
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.85.2-86
    • /
    • 2015
  • The YORP effect is non-gravitational force that changes the spin-status of asteroid. So far this effect has been directly detected only from the Near-Earth asteroids (Taylor et al. 2007; Lowry et al. 2007, 2014; Breiter et al. 2011; Durech et al. 2008, 2012). Pravec at el. 2008 found the evidences for changing spin rate of small asteroids (3 - 15 km) by the YORP effect in the Main-Belt and Mars-crossing asteroids. The Mars-crossing asteroids (1.3 < q < 1.66 AU) are objects that cross orbit of the Mars. The Mars-crossing asteroids are regarded as one of the main sources for the Near-Earth asteroids. We expect that rotation of Mars-crossing asteroids would be influenced by the YORP effect. We try to search observational evidence of the YORP effect for the Mars-crossing asteroid. Our target 2078 Nanking is a population of the Mars-crossing asteroid. First light-curve of 2078 Nanking was obtained from Mohamed et al. 1994, and Warner et al. 2015 recently published new observational data. We observed this asteroid on 26th Nov. 2014 and 17th Jan. 2015 using SOAO (Sobaeksan Optical Astronomy Observatory) 0.61 m telescope with 4K CCD. Using light-curve inversion method (Kaasalainen & Torppa 2001; Kaasalainen et al. 2001), we try to determine the pole orientation and shape model of this asteroid based on the combination of our light-curve and literature photometric data. Knowing spin parameters, such as rotational period and spin axis, are essential for studying the YORP effect. In this presentation, we provide some preliminary results of our recent study: light-curve and processing of shape modeling of 2078 Nanking. We plan to find observational clue for the YORP effect on the Mars-crossing asteroids.

  • PDF