• 제목/요약/키워드: association rule mining

검색결과 351건 처리시간 0.02초

Mining Association Rules of Credit Card Delinquency of Bank Customers in Large Databases

  • Lee, Young-Chan;Shin, Soo-Il
    • 지능정보연구
    • /
    • 제9권2호
    • /
    • pp.135-154
    • /
    • 2003
  • Credit scoring system (CSS) starts from an analysis of delinquency trend of each individual or industry. This paper conducts a research on credit card delinquency of bank customers as a preliminary step for building effective credit scoring system to prevent excess loan or bad credit status. To serve this purpose, we use association rules as a rule generating data mining technique. Specifically, we generate sets of rules of customers who are in bad credit status because of delinquency by association rule mining. We expect that the sets of rules generated by association rule mining could act as an estimator of good or bad credit status classifier and basic component of early warning system.

  • PDF

A Post-analysis of the Association Rule Mining Applied to Internee Shopping Mall

  • Kim, Jae-Kyeong;Song, Hee-Seok
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2001년도 춘계정기학술대회
    • /
    • pp.253-260
    • /
    • 2001
  • Understanding and adapting to changes of customer behavior is an important aspect for a company to survive in continuously changing environment. The aim of this paper is to develop a methodology which detects changes of customer behavior automatically from customer profiles and sales data at different time snapshots. For this purpose, we first define three types of changes as emerging pattern, unexpected change and the added / perished rule. Then we develop similarity and difference measures for rule matching to detect all types of change. Finally, the degree of change is evaluated to detect significantly changed rules. Our proposed methodology can evaluate degree of changes as well as detect all kinds of change automatically from different time snapshot data. A case study for evaluation and practical business implications for this methodology are also provided.

  • PDF

연관 규칙 탐사 응용을 위한 한 번 읽기에 의한 최대 크기 빈발항목 추정기법 (Approximation of Frequent Itemsets with Maximum Size by One-scan for Association Rule Mining Application)

  • 한갑수
    • 정보처리학회논문지D
    • /
    • 제15D권4호
    • /
    • pp.475-484
    • /
    • 2008
  • 최근에는 데이터를 획득 및 처리하는 방법의 향상으로 인하여 연속적이고 실시간으로 발생되는 데이터를 처리하는 응용이 증가하고 있다. 그러한 응용에서 연관규칙을 추출하기 위해서는 새로운 방식을 사용하여 빈발항목집합을 찾아내야 한다. 기존의 빈발항목을 발견하는 방식에서는 전체 데이터베이스를 반복적으로 읽으면서 처리해야 한다. 그러나 실시간이고 연속적으로 발생하는 데이터를 처리하는 응용에서는 반복적으로 여러 번 데이터를 읽을 수 없기 때문에 일정 구간의 데이터를 한 번만 읽고 처리해야 한다. 따라서 본 논문에서는 입력되는 데이터 구간을 한 번만 읽고 최대 빈발항목 집합의 크기와 해당 빈발항목을 추정함으로써 필요한 연관규칙탐사를 가능하게 하는 빈발항목 추정 기법을 제안한다.

빅데이터 플랫폼을 위한 SON알고리즘 기반의 효과적인 연관 룰 마이닝 (Efficient Association Rule Mining based SON Algorithm for a Bigdata Platform)

  • 뉘엔양쯔엉;뉘엔반퀴엣;뉘엔신응억;김경백
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권8호
    • /
    • pp.1593-1601
    • /
    • 2017
  • 빅데이터 플랫폼에서, 연관 룰 마이닝 응용프로그램은 여러 가치를 창출할 수 있다. 예를 들어, 농업 빅데이터 플랫폼에서 농가 소득을 높일 수 있는 농작물들을 농업인들에게 추천할 수 있다. 이 연관 룰 마이닝의 주요 절차는 빈발 아이템셋 마이닝으로, 이는 동시에 나타나는 아이템의 셋을 찾는 작업이다. Apriori를 비롯한 이전 연구에서는 대규모의 가능한 아이템 셋에 의한 메모리 오버로드의 이유로 만족할 만한 성능을 보일 수 없었다. 이를 개선하고자, 아이템 셋을 작은 크기로 분할하여 순차적으로 계산하도록 하는 SON 알고리즘이 제안되었다. 하지만, 단일 머신에서 SON 알고리즘을 돌릴 경우 많은 시간이 소요된다. 이 논문에서는 하둡기반의 빅데이터 플랫폼에서 SON 알고리즘 병렬처리 방식을 이용한 연관룰 탐색 기법을 소개한다. 연관 룰 마이닝을 위한 전처리, SON 알고리즘 기반 빈발 아이템셋 마이닝, 그리고 연관룰 검출 절차를 Hadoop기반의 빅데이터 플랫폼에 구현하였다. 실제 데이터를 활용한 실험을 통해 제안된 연관 룰 마이닝 기법은 Brute Force 기법의 성능을 압도하는 것을 확인하였다.

고객 구매행태의 지속적 변화 파악을 위한 재귀적 변화발견 방법 (A Recursive Procedure for Mining Continuous Change of Customer Purchase Behavior)

  • 김재경;채경희;최주철;송희석;조영빈
    • 경영정보학연구
    • /
    • 제8권2호
    • /
    • pp.119-138
    • /
    • 2006
  • 데이터 마이닝의 연관성규칙 분석 기법(Association Rule Mining)은 현실문제에의 많은 활용에도 불구하고 시간의 흐름에 대한 변화 파악 및 분석에서는 한계를 가지고 있다. 본 연구에서는 기존의 두 시점에서의 고객 행위 변화 파악 기법을 재귀적 방법을 통하여 다시점으로 확장하여 분석할 수 있는 방법론을 제시한다. 즉, 본 연구에서는 연관성규칙의 패턴 및 변화의 추세를 장기간에 걸쳐 지속적으로 관찰함으로써, 고객의 일시적인 변화보다는 지속적인 행위 변화를 관찰할 수 있도록 하는 방법론을 구성한다. 방법론을 검증하기 위해 L백화점의 4년간의 구매관련 데이터를 분석하여 그 결과를 제시하고 있다.

트랜잭션 연결 구조를 이용한 빈발 Closed 항목집합 마이닝 알고리즘 (An Efficient Algorithm for Mining Frequent Closed Itemsets Using Transaction Link Structure)

  • 한경록;김재련
    • 대한산업공학회지
    • /
    • 제32권3호
    • /
    • pp.242-252
    • /
    • 2006
  • Data mining is the exploration and analysis of huge amounts of data to discover meaningful patterns. One of the most important data mining problems is association rule mining. Recent studies of mining association rules have proposed a closure mechanism. It is no longer necessary to mine the set of all of the frequent itemsets and their association rules. Rather, it is sufficient to mine the frequent closed itemsets and their corresponding rules. In the past, a number of algorithms for mining frequent closed itemsets have been based on items. In this paper, we use the transaction itself for mining frequent closed itemsets. An efficient algorithm is proposed that is based on a link structure between transactions. Our experimental results show that our algorithm is faster than previously proposed methods. Furthermore, our approach is significantly more efficient for dense databases.

빅데이터 추천시스템을 위한 과립기반 연관규칙 마이닝 (Granule-based Association Rule Mining for Big Data Recommendation System)

  • 박인규
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권3호
    • /
    • pp.67-72
    • /
    • 2021
  • 연관규칙 마이닝은 여러 테이블에 숨겨진 패턴들의 관계를 나타내주는 방법이다. 요즈음에는 연관규칙 마이닝에 보다 세부적인 의미를 추가하기 위하여 과립화 논리를 이용하고 있다. 또한 기존의 데이터를 이용하여 추천하는 기존의 시스템과는 달리 과립화 연관규칙에서는 신규 가입자나 신규상품에 대한 추천의 경우도 가능하다. 따라서 연관규칙의 과립화의 정성적인 크기를 결정하는 것이 추천 시스템의 성능을 좌우한다. 본 논문에서는 관람자가 평가한 영화에 대한 관계를 파악하기 위하여 퍼지논리와 샤논 엔트로피 개념을 이용하여 관람자와 영화데이터에 대한 과립화 방법을 제안한다. 연구는 관람자와 영화간의 연관규칙의 함의에 결정적인 역할을 하는 데이터의 과립화의 크기를 결정하는 부분과 이러한 과립화를 이용하여 관람자와 영화간의 연관규칙을 추출하는 두 번째 부분으로 구성되어 있으며 넷플릭스의 MovieLens데이터를 이용하여 분석하였다. 최종적으로 도출된 연관규칙의 의미와 추천의 정확도 및 고려해야하는 함의를 제시하였다.

설문 데이터를 위한 다차원 연관 규칙 마이닝 (Multi-Dimensional Association Rule Mining in Survey Data)

  • 이정수;김교정
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2003년도 춘계학술대회
    • /
    • pp.395-399
    • /
    • 2003
  • 본 논문에서는 인문 사회과학 분야의 방대한 설문 데이터를 처리하기 위해 기존의 설문 항목들간의 평면적 관계에만 국한 되었던 연구에 대해 설문데이터 다차원 연관규칙 마이닝 시스템을 설계하고 데이터 간의 연관규칙을 탐사한다. 즉, 직관적으로 분류될 수 있는 기준에 따라 클러스터링을 실행하여 데이터를 분류한 후 각 클러스터로부터 다차원 연관 규칙을 탐사하는 시스템을 제안함으로써 보다 강력한 연관규칙을 탐사한다.

  • PDF

네트워크 패킷에 대한 연관 마이닝 기법을 적용한 네트워크 비정상 행위 탐지 (Network Anomaly Detection using Association Rule Mining in Network Packets)

  • 오상현;장중혁
    • 한국산업정보학회논문지
    • /
    • 제14권3호
    • /
    • pp.22-29
    • /
    • 2009
  • 컴퓨터를 통해서 들어오는 다양한 형태의 침입을 효과적으로 탐지하기 위해서 이전에는 오용탐지 기법이 주로 이용되어 왔다. 오용탐지 기법은 이전에 알려지지 않은 침입 방법들을 효과적으로 탐지할 수 있기 때문이다. 하지만, 해당 기법에서는 정상적인 네트워크 접속 형태가 몇 가지 패턴으로 고정되어 있다고 가정한다. 이러한 이유 때문에 새로운 정상적인 네트워크 연결이 비정상행위로 탐지되기도 한다. 본 논문에서는 연관 마이닝 기법을 활용한 침입 탐지 방법을 제안한다. 논문에서 제안되는 방법은 패킷내 마이닝 단계와 패킷간 마이닝 두가지 단계로 구성된다. 제안된 방법의 성능은 대표적인 네트워크 침입 탐지 방법인 JAM과의 비교 실험을 통하여 평가하였다.

데이터의 의미적 정보를 공정하게 반영한 인터트랜잭션들에 대한 연관규칙 탐사 (Association rule mining for intertransactions with considering fairly data semantics)

  • 정희택
    • 한국전자통신학회논문지
    • /
    • 제9권3호
    • /
    • pp.359-368
    • /
    • 2014
  • 최근에는 트랜잭션들 사이의 문맥을 반영하기 위해, 단위 트랜잭션들 사이의 관계를 반영한 확장 트랜잭션을 생성하고 이를 대상으로 인터트랜잭션들에 대한 연관 규칙 탐사방안이 연구되었다. 본 연구에서는 기존 인터트랜잭션들에 대한 연관규칙 탐사 기법에 존재하는 두 가지 문제를 제시하였고 이를 해결하기 위한 방안을 제안하였다. 첫째, 인접한 트랜잭션들 상에 존재하는 데이터의 의미적 변화 정보를 반영하기 위한 방안을 제안했다. 둘째, 트랜잭션을 인터트랜잭션으로 변환하는 과정에서 발생하는 불공정 고려를 해결하기 위한 방안을 제안했다. 이를 통해 기존 연구보다 의미 있는 규칙을 생성할 수 있다. 이를 해양 환경 데이터를 기반으로 실험하여 제시한다.