• Title/Summary/Keyword: assist

Search Result 2,934, Processing Time 0.032 seconds

Evaluation of the Usefulness of Assist Device for Rosenberg View Test (Rosenberg View 검사를 위한 보조기구의 유용성 평가)

  • Kong, Chang gi;Song, Jong Nam;Kim, In Soo;Han, Jae Bok
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.2
    • /
    • pp.129-138
    • /
    • 2020
  • Due to the nature of the Rosenberg Method, the patient needs to maintain posture for a certain period of time, and the joint space is observed in various forms depending on the angle of knee flexion, which causes difficulties in examination. In order to solve these problems, Image quality was evaluated in order to evaluate the usefulness of the assistive device by making the assistive device itself. SNR and CNR analysis about the presence or absence of an assistive device using the extremity phantom and the angle of the assistive device itself were not statistically significant(p < 0.05). As a result of measuring the distance between the right and left edges of the medial condyle based on the presence or absence of an assist device, and the absence of assist device (96.00±40.6 mm) and presence of an assist device (134.86±17.68 mm) were statistically significant (p <0.05). To find the aLDFA relationship about the femur and tibia, we measured the right and left aLDFA based on the presence or absence of assist device. As a result, the absence of the right-side aLDFA assist device (74.63°±4.87) and the presence of assist device (79.64°±3.65) were statistically significant (p <0.05). The absence of the left-side aLDFA assist device (76.39°±4.62) and the presence of assist device (79.64°±3.65) were statistically significant (p < 0.05). but, As a result of measuring the distance of the overlapping parts of the right and left proximal tibiofibular joint and the lateral condyle, There were no statistically significant differences between the right and left sides. In conclusion, we confirmed that we can obtain Diagnostically valuable images with a constant knee-to-knee spacing using an assist device we self-created. In addition, we could learn through aLDFA relationship between femur and tibial that the smaller the angle, the more medial condyle overlaps with JSW, We also confirmed the significance by deriving similar values on the normal range values of aLDFA using assist devices. However, it is considered necessary to pay attention to internal and external rotations in order to obtain good quality images by evaluating the distance of overlapping parts between proximal tibiofibular joint and lateral condyle.

LAUNCH OPPORTUNITIES FOR JUPITER MISSIONS USING THE GRAVITY ASSIST (행성 근접 통과를 이용한 목성 탐사선의 최적 발사 시기)

  • 송영주;유성문;박은서;박상영;최규홍;윤재철;임조령;김방엽;김한돌
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.2
    • /
    • pp.153-166
    • /
    • 2004
  • Interplanetary trajectories using the gravity assists are studied for future Korean interplanetary missions. Verifications of the developed softwares and results were performed by comparing data from ESA's Mars Express mission and previous results. Among the Jupiter exploration mission scenarios, multi-planet gravity assist mission to Jupiter (Earth-Mars-Earth-Jupiter Gravity Assist, EMEJGA trajectory) requires minimum launch energy ($C_3$) of 29.231 $Km^2$/$S^2$ with 4.6 years flight times. Others, such as direct mission and single-planet(Mars) gravity assist mission, requires launch energy ($C_3$) of 75.656 $Km^2$/$S^2$ with 2.98 years flight times and 63.590 $Km^2$/$S^2$ with 2.33 years flight times, respectively. These results show that the planetary gravity assists can reduce launch energy, while EMEJGA trajectory requires the longer flight time than the other missions.

Development of Calf Link Force Sensors of Walking Assist Robot for Leg Patients (다리 환자를 위한 보행보조로봇의 종아리 링크 3축 힘센서 개발)

  • Kim, Han-Sol;Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.114-121
    • /
    • 2017
  • This paper describes the design and fabrication of a three-axis force sensor with parallel plate beams (PPSs) for measuring the calf force while a patient with a walking assist robot is walking. Current walking assist robots can't measure the weight of the patient's leg and the robot's leg which required for robot control. So, the three-axis force sensor in the calf link is designed and manufactured, it is composed of a Fx force sensor, a Fy force sensor and a Fz force sensor. The three-axis force sensor was designed using by FEM(Finite Element Method), and fabricated using strain-gages. The characteristics experiment of the three-axis force sensor was carried out respectively. The test results indicated that the repeatability error and the non-linearity error of three-axis force sensor was less than 0.04% respectively. Therefore, the fabricated three-axis force sensor in the calf link can be used to measure the patient's calf force in the walking assist robot.

Development of Torque Sensor for Measurement of Knee Joint Torque of Walking Assist Robot in Stroke Patients (뇌졸중환자 보행보조로봇의 무릎관절 토크측정을 위한 토크센서 개발)

  • Park, Jeong-Hyeon;Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.105-111
    • /
    • 2018
  • In this paper, a torque sensor is designed and fabricated to measure the knee joint torque of a walking assist robot for stroke patients. The torque sensor sensing part was modeled on the link of the part connected to the knee joint motor. The torque capacity of the knee joint was calculated by simulation and the size of the torque sensor sensing part was designed using the finite element method. The torque sensor was fabricated by attaching a strain gauge to the sensing part. Characteristic experiments were conducted to characterize the torque sensor, and the torque sensor was calibrated to utilize it for the control of the walking assist robot. As a result of the characteristics test, the reproducibility error and the nonlinearity error of the torque sensor were 0.03% and 0.04%, respectively. Therefore, it is considered that the developed torque sensor can be used to measure the torque applied to the knee joint when walking on a walking assist robot.

Design of C-EPS (Column type - Electric Power Steering) Simulator and Development of Control Algorithm (C-EPS (C-type Electric Power Steering) 시뮬레이터 설계 및 제어 알고리즘 개발)

  • Park, Myung-Wook;Moon, Hee-Chang;Kim, Jung-Ha;Crane III, Carl D.
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.6
    • /
    • pp.566-571
    • /
    • 2010
  • EPS (Electric Power Steering) is important device for improving vehicle's dynamics and static performances. This paper deals with simulator design for C-EPS (Colum type-EPS), development assist and returnability control algorithm. First, C-EPS system model was simply designed because EPS system is complex control system that has many unknown variables. These parameters were simplified through assumptions. Second, C-EPS simulator was designed for development of control algorithm. This simulator has SAS (Steering Angle Sensor), dual torque sensor, dual load cell for measuring rack force, dual linear actuator for generating tire force and Data Acquisition System. Using this simulator, control methods ware tested. Third, control algorithm was designed for torque assist and returnability. Assist torque map and returnability torque map were found by lots of simulation test. These torque maps were tuned for EPS actuator control. The simulation result was compared with non-EPS system result. In this research, the C-EPS simulator was designed for development of control algorithm about torque assistant and returnability. Using this simulator, control algorithm was improved.

Organization of Sensor System and User's Intent Detection Algorithm for Rehabilitation Robot (보행보조 재활로봇의 센서 시스템 구성 및 사용자 의도 감지 알고리즘)

  • Jung, Jun-Young;Park, Hyun-Sub;Lee, Duk-Yeon;Jang, In-Hun;Lee, Dong-Wook;Lee, Ho-Gil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.933-938
    • /
    • 2010
  • In this paper, we propose the organization of a sensor system and user's intent detection algorithm for walking assist rehabilitation robots. The main purpose of walking assist rehabilitation robots is assisting SCI patients to walk in normal environment. To use walking assist rehabilitation robot in normal environment, it is needed to consider various factors about user's safety and detection of user's intent and so on. For these purposes, we have analyzed the use case of rehabilitation robots and organized the system of sensors for walking assist rehabilitation robots and finally, we have developed the algorithm which is used to detect user's intent for those. We applied our proposal method in the rehabilitation robot, ROBIN, and verified their effectiveness by normal, not patient.