• Title/Summary/Keyword: assessment of soil physical properties

Search Result 38, Processing Time 0.023 seconds

Classification and Spatial Variability Assessment of Selected Soil Properties along a Toposequence of an Agricultural Landscape in Nigeria

  • Fawole Olakunle Ayofe;Ojetade Julius Olayinka;Muda Sikiru Adekoya;Amusan Alani Adeagbo
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.3
    • /
    • pp.180-194
    • /
    • 2023
  • This study characterize, classify and evaluates the function of topography on spatial variability of some selected soil properties to assist in designing land management that support uniform agricultural production. The study site, an agricultural land, was part of the derived savanna zone in southwest Nigeria. Four soil profile pits each were established along two delineated toposequence and described following the FAO/UNESCO guidelines. Samples were collected from the identified genetic horizons. Properties of four soil series developed on different positions of the two delineated Toposequence viz upper, middle, lower slopes and valley bottom positions respectively were studied. The soil samples were analysed for selected physical and chemical properties and data generated were subjected to descriptive and inferential statistics. The results showed that soil colour, depth and texture varied in response to changes in slope position and drainage condition. The sand content ranged from 61 to 90% while the bulk density ranged between 1.06 g cm-3 to 1.68 g cm-3. The soils were neutral to very strongly acid with low total exchangeable bases. Available phosphorus value were low while the extractable micronutrient concentration varied from low to medium. Soils of Asejire and Iwo series mapped in the study area were classified as Typic isohyperthermic paleustult, Apomu series as Plinthic isohyperthermic paleustult and Jago series as Aquic psamment (USDA Soil Taxonomy). These soils were correlated as Lixisol, Plinthic Lixisol and Fluvisol (World Reference Based), respectively. Major agronomic constraints of the soils associations mapped in the study area were nutrient availability, nutrient retention, slope, drainage, texture, high bulk density and shallow depth. The study concluded that the soils were not homogenous, shows moderate spatial variation across the slope, had varying potentials for sustainable agricultural practices, and thus, the agronomic constraints should be carefully addressed and managed for precision agriculture.

Analysis of Soil Erodibility Potential Depending on Soil and Topographic Condition - A Case Study of Ibang-myeon, Changnyeong-gun, Kyungsangnam-do, South Korea- (토양 및 지형 조건에 따른 토양침식 잠재성 분석 - 경상남도 창녕군 이방면을 대상으로 -)

  • Park, In-Hwan;Jang, Gab-Sue;Lee, Geun-Sang;Seo, Dong-Jo
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • Changes in the soil physical property and the topographic condition derived from agricultural activities like as farming activities, land clearance and cutting down resulted in environmental and economic problems including the outflow of nutrient from farms and the water pollution. Several theories on the soil conservation have been developed and reviewed to protect soil erosion in the regions having a high risk of erosion. This study was done using the USLE model developed by Wischmeier and Smith (1978), and model for the slope length and steepness made by Desmet and Govers (1996), and Nearing (1997) to evaluate the potential of the soil erodibility. Therefore, several results were obtained as follows. First, factors affecting the soil erosion based on the USLE could be extracted to examine the erosion potential in farms. Soil erodibility (K), slope length (L), and slope steepness (S) were used as main factors in the USLE in consideration of the soil, not by the land use or land cover. Second, the soil erodibility increased in paddy soils where it is low in soil content, and the very fine sandy loam exists. Analysis of the slope length showed that the value of a flat ground was 1, and the maximum value was 9.17 appearing on the steep mountain. Soil erodibility showed positive relationship to a slope. Third, the potential soil erodibility index (PSEI) showed that it is high in the PSEI of the areas of steep upland and orchard on the slope of mountainous region around Dokjigol mountain, Dunji mountain, and Deummit mountain. And the PSEI in the same land cover was different depending on the slope rather than on the physical properties in soil. Forth, the analysis of land suitability in soil erosion explained that study area had 3,672.35ha showing the suitable land, 390.88ha for the proper land, and 216.54ha for the unsuitable land. For unsuitable land, 8.71ha and 6.29ha were shown in fallow uplands and single cropping uplands, respectively.

Simulation of Hydrological and Sediment Behaviors in the Doam-dam Watershed considering Soil Properties of the Soil Reconditioned Agricultural Fields (객토 농경지의 토양특성을 고려한 도암댐 유역에서의 수문 및 유사 거동 모의)

  • Heo, Sung-Gu;Kim, Jae-Young;Yoo, Dong-Sun;Kim, Ki-Sung;Ahn, Jae-Hun;Yoon, Jong-Suk;Lim, Kyoung-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.2
    • /
    • pp.49-60
    • /
    • 2007
  • The alpine agricultural activities are usually performed at higher and steep areas in nature. Thus, significant amounts of soil erosion are occurring compared with those from other areas. Thus, the soil erosion induced environmental impacts in these areas are getting greater. The Doam watershed is located at alpine areas and it has been well known that the agricultural activities in the watershed are causing accelerated soil erosion and water quality degradations. Many modeling approaches were employed to solve soil erosion and water quality issues. In this study, the Soil and Water Assessment Tool (SWAT) model was utilized to simulate the hydrologic and sediment behaviors in the Doam watershed. In many previous modeling studies, the digital soil map and its corresponding soil properties were used without modification to reflect soil conditioning at many agricultural fields of the Doam watershed. Thus, the soil sample was taken at the agricultural field within the Doam watershed and analyzed for its physical properties. In this study, the digital topsoil properties in the agricultural fields within the Doam watershed were replaced with the soil properties for reconditioned soil analyzed in this study to simulate the impacts of using soil properties for reconditioned soil in hydrologic and sediment modeling at the Doam watershed using the SWAT model. The hydrologic component of the SWAT model was calibrated and validated for measured flow data from 2002 to 2003. The $R^2$ value was 0.79 and the EI value was 0.53 for weekly simulated data. The calibrated model parameters were used for hydrologic component validation and the $R^2$ value was 0.86 and the EI value was 0.74 for weekly data. For sediment comparison, the $R^2$ value was 0.67 and the EI value was 0.59. These statistics improved with the use of soil properties of the reconditioned soil in the field compared with the results obtained without considering soil reconditioning. The simulated sediment amounts with and without considering the soil properties of the reconditioned soil were 284,813 ton and 158,369 ton, respectively. This result indicates that there could be approximately 79% of errors in estimated sediment yield at the Doam watershed, although the model comparison with the measured data gave similar satisfactory statistics with and without considering soil properties from the reconditioned soil.

Study on Land Suitability Assessment of Grapes with Regards to Climate and Soil Conditions in South Korea (기후 및 토양 정보를 고려한 포도의 재배적지 구분 연구)

  • Kim, Yongseok;Choi, Wonjun;Hur, Jina;Shim, Kyo-Moon;Jo, Sera
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.4
    • /
    • pp.250-257
    • /
    • 2020
  • It is difficult for farmers to select new crops for cultivation to increase income. So we conducted land suitability assessment of grapes with soil and climate information related to crop growth. At first, land suitabilities for grapes were classified into three categories (most suitable, suitable, low productive & not suitable areas) according to soil and climate conditions, respectively. In details, land suitability with respect to soil was assessed by soil morphological and physical properties including soil texture, drainage class, available soil depth, slope and gravel content, whereas one in accordance with climate was evaluated by average annual temperature, temperature during the growing season, temperature during maturation, the lowest temperature, chilling requirement and precipitation during the growing season. Secondly, we combined both soil and climate classification results using a most-limiting characteristic method. Maps showing the suitable land for grapes cultivation were drawn. The results indicate that the most suitable area of cultivation for grapes in south Korea was 3.43% and suitable (possible) area was 10.61%. This study may help to preserve land and increase the productivity through providing valuable information regarding where more suitable areas for grapes are located.

Soil Related Parameters Assessment Comparing Runoff Analysis using Harmonized World Soil Database (HWSD) and Detailed Soil Map (HWSD와 정밀토양도를 이용한 유출해석시 토양 매개변수 특성 비교 평가)

  • Choi, Yun Seok;Jung, Young Hun;Kim, Joo Hun;Kim, Kyung-Tak
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.4
    • /
    • pp.57-66
    • /
    • 2016
  • Harmonized World Soil Database (HWSD) including the global soil information has been implemented to the runoff analysis in many watersheds of the world. However, its accuracy can be a critical issue in the modeling because of the limitation the low resolution reflecting the physical properties of soil in a watershed. Accordingly, this study attempted to assess the effect of HWSD in modeling by comparing parameters of the rainfall-runoff model using HWSD with the detailed soil map. For this, Grid based Rainfall-runoff Model (GRM) was employed in the Hyangseok watershed. The results showed that both of two soil maps in the rainfall-runoff model are able to well capture the observed runoff. However, compared with the detailed soil map, HWSD produced more uncertainty in the GRM parameters related to soil depth and hydraulic conductivity during the calibrations than the detailed soil map. Therefore, the uncertainty from the limited information on soil texture in HWSD should be considered for better calibration of a rainfall-runoff model.

토양 유기물 분리 처리 방법이 비친수성 오염물질 흡착에 미치는 영향

  • Jeong Sang-Jo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.42-45
    • /
    • 2005
  • Accurate prediction of the fate and transport of contaminants in soils and sediments is very Important to environmental risk assessment and effective remediation of contaminated soils and sediments. The fate and transport of contaminants in subsurface are affected by geosorbents, especially carbonaceous materials including black carbon. Various physical and chemical treatment methods have been developed to separate different kinds of carbonaceous materials from soils and sediments. However, the effects of these separation methods on the properties of remaining carbonaceous materials including sorption capacity and linearity are unclear. The objective of this study is to determine if the chemical and thermal treatment methods previously used to separate different carbonaceous material fractions affect the properties of carbonaceous materials including longer term sorption capacity of hydrophobic organic contaminants. The results indicate that treatments with hydrochloric acid (HCl)/hydrofluoric acid (HF), trifluoroacetic acid (TFA), sodium hydroxide (NaOH) may not affect the sorption capacity of black carbon reference materials such as char and soot, however, treatments with acid dichromate $(K_2Cr_2O_7/H_2SO_4)$ and heat $(375^{\circ}C)$ for 24 hours in sufficient of oxygen) decrease the sorption capacity of them. The results of longer term sorption isotherm indicate that 2 days might be enough for trichloroethene (TCE) to equilibrate apparently with treated black carbon reference materials. The results suggest that acid dichromate and heat treatments may not appropriate method to investigate sorption properties of black carbon in soils and sediments.

  • PDF

A Study on the Parameters Influencing the Failed Soil-Slope in Okcheon Metamorphic Zone (옥천변성대 절개지 사면의 토층붕괴 영향인자에 관한 연구)

  • Lee, Kyoung-Mi;Kim, Byung-Chan;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.19 no.4
    • /
    • pp.501-508
    • /
    • 2009
  • This study aims to clarify the characteristics of the physical and mechanical properties of soil-slope failure of Okcheon metamorphic zone. Soil samples were collected from 35 collapsed and uncollapsed artificial slopes along national roads. A series of laboratory experiments was carried out to examine physical and mechanical properties of soils and rocks. The results show that failure slopes have weakness of failure at 0.75 of AMI or higher, 32% of liquid limit or higher, and 31% of saturated moisture content or higher. The plastic index of failure slopes is correlated to wet density and saturated density. It turned out that failure could easily happen according to a high plastic index even if the void ratio was low. The greater the contents of bigger-sized soil, i.e. contents of sands and gravels rather than of clays, is the greater the chance to fail at the slope.

Assessment of Landslide Susceptibility using a Coupled Infinite Slope Model and Hydrologic Model in Jinbu Area, Gangwon-Do (무한사면모델과 수리학적 모델의 결합을 통한 강원도 진부지역의 산사태 취약성 분석)

  • Lee, Jung Hyun;Park, Hyuck Jin
    • Economic and Environmental Geology
    • /
    • v.45 no.6
    • /
    • pp.697-707
    • /
    • 2012
  • The quantitative landslide susceptibility assessment methods can be divided into statistical approaches and geomechanical approaches based on the consideration of the triggering factors and landslide models. The geomechanical approach is considered as one of the most effective approaches since this approach proposes physical slope model and considers geomorphological and geomechanical properties of slope materials. Therefore, the geomechanical approaches has been used widely in landslide susceptibility analysis using the infinite slope model as physical slope model. However, the previous studies assumed constant groundwater level for broad study area without the consideration of rainfall intensity and hydraulic properties of soil materials. Therefore, in this study, landslide susceptibility assessment was implemented using the coupled infinite slope model with hydrologic model. For the analysis, geomechanical and hydrualic properties of slope materials and rainfall intensity were measured from the soil samples which were obtained from field investigation. For the practical application, the proposed approach was applied to Jinbu area, Gangwon-Do which was experienced large amount of landslides in July 2006. In order to compare to the proposed approach, the previous approach was used to analyze the landslide susceptibility using randomly selected groundwater level. Comparison of the results shows that the accuracy of the proposed method was improved with the consideration of the hydrologic model.

Review of Soil Vulnerability Assessment Tools in Korea and other developed countries (국내외 토양 취약성 평가 연구 동향)

  • Ki, Seo Jin;Kim, Kyoung-Ho;Lee, Hyeon Gyu;Shin, Kyung Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.12
    • /
    • pp.741-749
    • /
    • 2017
  • This study aims to provide the technical considerations and implications for the development of soil vulnerability assesment tool based on the review of existing tools and case studies applied both domestically and internationally. For this study, we specifically investigated the basic theories and major features implemented in the screening models abroad. In contrast, one case study of prioritizing the vulnerable districts was presented to identify the research trends in Korea. Our literature review suggested that the characteristic of target areas and contaminants needed to be properly incorporated into soil vulnerability assessment because the current tools in Korea neglected these properties which prevented this tool from being used as a correct measure of soil management and prevention. We also reached the conclusion that in terms of technical aspect, the soil vulnerability assessment tool should be developed based on the physical theory and environmental data that were varied over space and time so that the end-users were able to readily and effectively screen soil vulnerability over large areas. In parallel with technical improvement, great effort needed to be devoted to develop an integrated environmental information system that increased the availability of data and shared various types of environmental data through enhanced multi-agency collaboration.

Degradation Assessment of Forest Trails in Gyeongnam Domain of Mt. Jiri (지리산 숲길 경남권역 구간의 훼손 실태 평가)

  • Park, Jae-Hyeon;Huh, Keun-Young;Lim, Hong-geun
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.3
    • /
    • pp.476-482
    • /
    • 2011
  • As part of studies on the reduction of forest trails degradation caused by high users density, this study was carried out to investigate soil physical properties of forest trails of Gyeongnam Domain in Mt. Jiri, Southeast Korea. Since the forest were opened for leisure trailing in 2008, the average soil erosion amounts per a square meter on the forest trails were $0.0015m^3$ from Inweol to Gumgeo, $0.0018m^3$ from Dongang to Suchol, and $0.0027m^3$ from Suchol to Chungam for 3 years. But, from Chungam to Agyang, the erosion was almost not occurred because it was recently opened. The soil hardness in 5 cm depth was significantly higher than in 10 cm depth. It indicates that intensive soil compaction by users has mainly affected in 5 cm soil depth until now on. In three forest trails compacted intensively, the porosity of 0-7.5 cm soil layer was down to 1.4-1.5 times compared to that in 2008. In additions, the bulk density was up to 1.6-3.1 times compared to the controls, which were not opened to users. As a result, the degradation caused by high users density would keep occurring on the three forest trails unless any counterplans are considered for the degradation reduction. At the moment, users distribution to other forest trails and long-term sabbatical years would be the most effective counterplans to keep from users gravitation on the three forest trails.