• Title/Summary/Keyword: assessment of safety

Search Result 5,533, Processing Time 0.044 seconds

Framework for Continuous Assessment and Improvement of Occupational Health and Safety Issues in Construction Companies

  • Mahmoudi, Shahram;Ghasemi, Fakhradin;Mohammadfam, Iraj;Soleimani, Esmaeil
    • Safety and Health at Work
    • /
    • v.5 no.3
    • /
    • pp.125-130
    • /
    • 2014
  • Background: Construction industry is among the most hazardous industries, and needs a comprehensive and simple-to-administer tool to continuously assess and promote its health and safety performance. Methods: Through the study of various standard systems (mainly Health, Safety, and Environment Management System; Occupational Health and Safety Assessment Series 180001; and British Standard, occupational health and safety management systems-Guide 8800), seven main elements were determined for the desired framework, and then, by reviewing literature, factors affecting these main elements were determined. The relative importance of each element and its related factors was calculated at organizational and project levels. The provided framework was then implemented in three construction companies, and results were compared together. Results: The results of the study show that the relative importance of the main elements and their related factors differ between organizational and project levels: leadership and commitment are the most important elements at the organization level, whereas risk assessment and management are most important at the project level. Conclusion: The present study demonstrated that the framework is easy to administer, and by interpreting the results, the main factors leading to the present condition of companies can be determined.

An Evaluation of the Quantitative Risk of Plastic Process Manufacturing Industries by Means of the 4M Method

  • Lee, Dong-Ho;Kim, Jong-In
    • International Journal of Safety
    • /
    • v.6 no.2
    • /
    • pp.8-12
    • /
    • 2007
  • This study includes a case study among plastic process manufacturing companies, based on which, the currently used 4M method is applied in terms of machine, media, man, and management, to conduct quantitative risk evaluation, and thus to contribute to reducing human and material loss as well as preventing accidents in industrial fields. The result of this study is analyzed based on the 4M-risk assessment to find out the hazardous risk elements, and the quantitative evaluation made it predictable the value of risk(frequency $\times$ intensity) in such classified levels as serious risk, critical risk, and intolerable risk. Further, Among the businesses with hazardous risk elements and high frequency of industrial disaster, risk analysis was conducted for each process, and as a result, 38 cases among 76, including those of serious risk, critical risk, and intolerable risk, were improved, and the risk was reduced. Besides, it is thought that with the engineering approach with 4M-Risk Assessment, the attempt to improve safety level contributes to prevention of accidents.

A Study of Safety Acquirement for an Assessment of Ultra High Pressure System (초고압 시스템의 안전성 확보에 대한 연구)

  • Lee, Gi-Chun;Kim, Hyoung-Eui;Kim, Jae-Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.5
    • /
    • pp.7-14
    • /
    • 2010
  • Ultra high pressure system, which can be generally increased over 1,000bar, needs to have sealing mechanism to protect leakage and selection of the materials used in the intensifier. Components such as pressure vessel, hydraulic hose assembly, accumulator, hydraulic cylinder, hydraulic valve, pipe, etc., are tested under the impulse-pressure conditions. Components need to be tested under 1.5 to 3 times of rated pressure to check the tolerance even though rated pressure range of these components are not ultra high pressure. So, the ultra high pressure system needs to be equiped to test components. In this study, safety assessments of ultra high pressure system which are using failure analysis of components, changing the types of the control system, and finite element analysis with static condition, are investigated.

Probabilistic finite Element Analysis of Plane Frame (평면 FRAME구조물의 확률 유한 요소 해석)

  • 양영순;김지호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1989.10a
    • /
    • pp.40-45
    • /
    • 1989
  • In order to take account of the statistical properties of random variables used in the structural analysis, the conventional approach usually adopts the safety factor based on past experiences for the qualitative assessment of structural safety problem. Recently, new approach based on the probabilistic concept has been applied to the assessment of structural safety in order to circumvent the difficulties of the conventional approach in choosing the appropriate safety factor. Thus, computer program called "Probabilistic finite element method" is developed by incorporation the probabilistic concept into the conventional matrix method in order to investigate the effects of the random variables on the final output of the structural analysis. From the comparison of some examples, it can be concluded that the PFEM developed in this study deals with consistently with the uncertainty of random variables and provides the rational tool for the assessment of structural safety of plane frame.

  • PDF

A Study on Assessment of Vessel Traffic Safety Management by Marine Traffic Flow Simulation (해상교통류 시뮬레이션에 의한 해상교통안전관리평가에 관한 연구)

  • Park Young- Soo;Jong Jae-Yong;Inoue Kinzo
    • Journal of the Korea Society for Simulation
    • /
    • v.11 no.4
    • /
    • pp.43-55
    • /
    • 2002
  • Vessel traffic safety management means the managerial technical measures for improving the marine traffic safety in general terms. The main flow of vessel traffic safety management is that: 1) Traffic Survey, 2) Replay by Marine Traffic Flow Simulation, 3) Quantitative Assessment, 4) Policy Alternatives, 5) Prediction·Verification. In the management of vessel traffic safety, it is most important to establish assessment models that can numerically estimate the current safety level and quantitatively predict the correlation between the measures to be taken and the improvement of safety and the reduction of ship handling difficulties imposed on mariners. In this paper, the replay model for traffic flow simulation was made using marine traffic survey data, and the present traffic situation became replay in the computer. An attempt was made to rate the current safety of ports and waterways by applying the Environmental Stress model. And, as a countermeasure for traffic management, by taking of, the promotion of total traffic congestion in early morning rush hour, the correlation between traffic control rate and the reduction in ship handling difficulties imposed on mariners was predicted quantitatively.

  • PDF

FUKUSHIMA DAI-ICHI ACCIDENT: LESSONS LEARNED AND FUTURE ACTIONS FROM THE RISK PERSPECTIVES

  • Yang, Joon-Eon
    • Nuclear Engineering and Technology
    • /
    • v.46 no.1
    • /
    • pp.27-38
    • /
    • 2014
  • The Fukushima Dai-Ichi accident in 2011 has affected various aspects of the nuclear society worldwide. The accident revealed some problems in the conventional approaches used to ensure the safety of nuclear installations. To prevent such disastrous accidents in the future, we have to learn from them and improve the conventional approaches in a more systematic manner. In this paper, we will cover three issues. The first is to identify the key issues that affected the progress of the Fukushima Dai-Ichi accident greatly. We examine the accident from a defense-in-depth point of view to identify such issues. The second is to develop a more systematic approach to enhance the safety of nuclear installations. We reexamine nuclear safety from a risk point of view. We use the concepts of residual and unknown risks in classifying the risk space. All possible accident scenarios types are reviewed to clarify the characteristics of the identified issues. An approach is proposed to improve our conventional approaches used to ensure nuclear safety including the design of safety features and the safety assessments from a risk point of view. Finally, we address some issues to be improved in the conventional risk assessment and management framework and/or practices to enhance nuclear safety.

Quantitative Risk Assessment based on Fault Tree Analysis for Gangform Accident (갱폼 재해의 FTA를 통한 정량적 위험성 산정에 관한 연구)

  • Ham, Young Jong;Kee, Jung Hun;Park, Jong Yil
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.4
    • /
    • pp.40-47
    • /
    • 2020
  • Although gangform has good workability due to the integration of outer wall forms and working platforms, 22 workers were died from 21 gangform related accidents during 2012 to 2016. Quantitative risk assessment is required for evident based prevention measure selection. In this study, based on 52 accident data from 2004 to the first half of 2019, FTA is conducted for probabilities of direct causes and their contribution to accidents. Three stages are considered; gangform installation, dismantling and lifting, and using. The effectiveness of countermeasures is evaluated through minimum cut set, RAW and RRW. Complete assembly of gangform on the ground level, detailed planning, and fall prevention device are suggested as prevention measures for installation, dismantling and lifting, and using stages, respectively.

Safety Assessment of Human Body for the Electromagnetic Field of Unbalanced Power System (불평형 계통에서의 전자계에 대한 인체안전평가)

  • 김상철;송현선;김두현
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.3
    • /
    • pp.54-62
    • /
    • 1999
  • This paper presents a study on the safety assessment of human body for electromagnetic field at unbalanced power system. The 3-phase load flow algorithm uses Newton-Raphson method based on Taylor series expansion of power flow equations in rectangular coordinates. The use of such a method can result in a solution with good convergence characteristics. In the safety assessment of human body, the approach based on fuzzy linguistic variable is employed to overcome the shortcomings resulting from a crisp set concept. The suggested scheme is applied to a 24bus system to validate the usefulness. The results for an unbalanced power system are compared with the results for a balanced power system.

  • PDF

Fuzzy Linguistic Variable Based Approach for Safety Assessment of Human Body in ELF Electromagnetic Field Considering Power System States (계통상태를 고려한 ELF 전자계의 인체안전평가를 위한 퍼지언어변수 접근법)

  • 김상철;김두현;고은영
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.2
    • /
    • pp.70-79
    • /
    • 1997
  • This paper presents a study on the fuzzy linguistic variable based approach for safety assessment of human body in ELF electromagnetic field considering power system states. To cope with the demand in modern industry, the power system becomes larger in scale, higher in voltage. The advent of high voltage system has increased the relative importance of field effects. The analysis of ELF electromagnetic field based on Quasi-Static Method is introduced while the power system is included to model the expected and/or unexpected uncertainty caused by the load fluctuation and parameter changes. In order to analyze the power system, Monte Carlo simulation method and contingency analysis method are adopted in normal state and alert state, respectively. In the safety assessment of human body, the approach based on fuzzy linguistic variable is employed to overcome the shortcomings resulting from a crisp set concept. The suggested scheme is applied to a sample system(modified IEEE 14 bus system) to validate the usefulness.

  • PDF

Material Degradation in KS D 3503 SS400 Rolled Steel at $179^{\circ}C$ (KS D 3503 SS400 압연강 $179^{\circ}C$에서의 재질열화 연구)

  • Baek, Un-Bong;Park, Jong-Seo;Nahm, Seung-Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.4 s.76
    • /
    • pp.13-18
    • /
    • 2006
  • In spite of frequent defect in industrial boilers, life assessment or diagnostic method for them has not been actively studied. In this research, SS400 carbon steel used in industrial boilers is simulated with artificial aging heat treatment. To do qualitative life assessment, differences in micro-structures and hardness of SS400 by the degradation time are studied. In addition, variation in material properties by aging was observed with the tensile test at room temperature and $179^{\circ}C$ and changes in ductile to brittle transition temperature was observed with the charpy impact test performed at several test temperature.