• Title/Summary/Keyword: assembly production line

Search Result 135, Processing Time 0.026 seconds

Application of Bucket Brigades in Assembly Cells for Self Work Balancing (자율적인 밸런싱을 실현하는 Bucket Brigade 기반의 조립셀 운영방식)

  • Koo, Pyung-Hoi
    • IE interfaces
    • /
    • v.22 no.2
    • /
    • pp.144-152
    • /
    • 2009
  • Assembly line has been recognized as an efficient production system in mass production. However, the recent production environment characterized as mass customization urges production managers to transform a long assembly line to a number of short assembly cells. To maximize the utilization of resources in an assembly cell, it is important to have the line balanced. This paper presents a bucket brigade-based assembly cell. Bucket brigade is a way of coordinating workers who progressively perform a set of assembly operations on a flow line. Each worker follows a simple rule: perform assembly operations on a product until the next worker downstream takes it over; then go back to the previous worker upstream to take over a new assembly job. In this way, the line balances itself. The bucket brigade assembly cell is analyzed and compared with traditional assembly lines and general assembly cells. The paper also discusses some prerequisite requirements and limitations when the bucket brigade assembly cells are employed.

A Sequencing Problem in Mixed-Model Assembly Line Including a Painting Line

  • Yoo, J.K.;Moriyama, T.;Shimizu, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1118-1122
    • /
    • 2005
  • In order to keep production balance at a mixed-model assembly line and a painting line, large WIP(Work- In-Process) inventories are required between two lines. To increase the efficiency of line handling through reducing the inventories under this circumstance, this paper concerns with a sequencing problem for a mixed-model assembly line that includes a painting line where the uncertain elements regarding the defective products exist. Then, we formulate a new type of the sequencing problem minimizing the line stoppage time and the idle time with forecasting the supply time of the products from the painting line. Finally, we examine the effectiveness of the proposed sequencing through computer simulations.

  • PDF

Analytic consideration on real-time assembly line control for multi-PCB models

  • Um, Doo-Gan;Park, Jong-Oh;Cho, Sung-Jong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.318-323
    • /
    • 1992
  • The improvement of the production capability of multi PCB assembly line can not be simply done by improving the capacities of each assembly robot cells but must be done by controlling the production line effectively with the line host computer which controls over the whole assembly line. A real time production control, a real time model change and a real time trouble shooting compose the specific concepts of this technique. In this paper, we present and analyze the definition and application method of real time assembly concept. The meaning of real time model change, troubles and error sooting and its algorithm will be introduced. Also, the function of the host computer which is in charge of all of many different tasks mentioned above and the method are presented. The improvement of the productivity is mainly focused on the efficiency of multi-PCB production control. The importance of this aspect is gradually increasing, which we have presented the analysis and the solution.

  • PDF

A Study on Determining the Launching Time Interval of AGV in Assembly Line (조립라인에서 무인 운반차(AGV)의 방출시간간격 결정에 관한 연구)

  • 김승영;이근희
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.14 no.23
    • /
    • pp.47-55
    • /
    • 1991
  • In automated assembly line, an automatic guided vehicle system(AGVS) represents a mire versatile means of moving materials automatically. In this paper, the vehicles not only provide the transportation medium between workstations but also as mobile workstations. The objective for the developed model is the determination of the appropriate time to control AGV based assembly line in order to minimize production makespan while maximizing the efficient use of vehicles. In this paper, we consider the finished goods of two types which are produced in assembly line. The assembly line is considered with and without queue. Because no buffer are present in case 1. this model seeks to determine the point in time at which vehicles should be launched in the assembly line without experiencing a delay. The case 2 model also seek to determine the vehicle launch times while minimizing production makespan. The assumption in this model is that the maximum queue size cannot exceed 1 at any time.

  • PDF

Experimental Study of New Welding Assembly Technology Applied with Mixed-Model Production Method (혼류생산 방식을 적용한 신개념 용접조립 기술 연구)

  • Park, Dong Hwan;Gu, Ja Jun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.6
    • /
    • pp.602-608
    • /
    • 2014
  • Mixed-model production lines are often used in manufacturing systems. In production lines, different product types are simultaneously manufactured by processing small batches. This paper describes a new welding assembly technology involving the development of experimental models for a mixed-model production line in an automobile company. Due to the extensive number of models, the design of a welding assembly system is complicated. Performance evaluation is an important phase in the design of welding assembly lines in a mixed-model production environment. In this study, a new welding assembly technology for a mixed-model production method was used to weld the package tray and dash panel of a vehicle.

Digital Manufacturing Strategy & Case study of Automotive General Assembly (자동차 조립 라인의 디지털 생산 구축 사례연구)

  • Choi M.W.;Han S.T.;Seo J.H.;Woo J.H.;Lee C.J.;Choi Y.R.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.3
    • /
    • pp.199-209
    • /
    • 2005
  • In this paper, a digital simulation model for an automotive assembly line is constructed by adapting a digital manufacturing methodology. Applied methodology is a simulation for a plant level of the assembly production line. The first significance of this methodology is a validation of the production planning based on various scenarios. The second is pre-verification for the new production plan or production method. The third is a visualization of the production process. Several models were implemented and those models were verified. Then, it was possible to find a most efficient production scenario and production method.

A Mathematical Model for Converting Conveyor Assembly Line to Cellular Manufacturing

  • Kaku, Ikou;Gong, Jun;Tang, Jiafu;Yin, Yong
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.2
    • /
    • pp.160-170
    • /
    • 2008
  • This paper proposes a mathematical model for converting conveyor assembly line to cellular manufacturing in complex production environments. Complex production environments refer to the situations with multi-products, variant demand, different batch sizes and the worker abilities varying with work stations and products respectively. The model proposed in this paper aims to determine (1) how many cells should be formatted; (2) how many workers should be assigned in each cell; (3) and how many workers should be rested in shortened conveyor line when a conveyor assembly line should be converted, in order to optimize system performances which are defined as the total throughput time and total labor power. We refer the model to a new production system. Such model can be used as an evaluation tool in the cases of (i) when a company wants to change its production system (usually a belt conveyor line) to a new one (including cell manufacturing); (ii) when a company wants to evaluate the performance of its converted system. Simulation experiments based on the data collected from the previous documents are used to estimate the marginal impact that each factor change has had on the estimated performance improvement resulting from the conversion.

Real-time line control system for automated robotic assembly line for multi-PCB models

  • Park, Jong-Oh;Hyun, Kwang-Ik;Um, Doo-Gan;Kim, Byoung-Doo;Cho, Sung-Jong;Park, In-Gyu;Kim, Young-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1915-1919
    • /
    • 1991
  • The efficiency of automated assembly line is increased by realizing the automation of each assembly cell, monitoring the line information and developing the real-time line control system it. which production flow is controllable. In this paper, the several modules which are important factors when constructing automated real-time control system, such as, line control S/W module, real-time model change module, error handling module and line production management S/W module, are developed. For developing these important programming modules, real-time control and multi-tasking techniques are integrated. In this paper, operating method of real-time line control in PCB automated assembly line is proposed and for effective control of production line by using multi-tasking technique, proper operating method for relating real-time line control with multi-tasking is proposed by defining the levels of signals and tasks. CIM-Oriented modular programming method considering expandability and flexibility will be added for further research in the future.

  • PDF

Automobile Assembly Sequence System Using Production Information (생산정보를 이용한 자동차 조립 서열시스템에 관한 연구)

  • Ock, Young-Seok;Kim, Byung Soo;Bae, Jun-Hee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.3
    • /
    • pp.8-15
    • /
    • 2014
  • For zero inventory and mixed assembly production, JIT (Just In Time) production system in Toyota and JIS (Just-In-Sequence) production system in Hyundai motor co. have been proposed in automobile production areas. Even though the production systems are popular in the areas, many subcontract companies producing part-modules for final production at a parent company suffers from excessive or shortage amount of inventory due to the time gap of production and delivery to the parent company. In this study, we propose an efficient real-time assembly sequence system applying a well-known Pareto method using Paint-In information in painting process and daily production planning information. Based on this system, a production line can estimate the shortage amount of UPH (Units Per Hour) at production line and recovers the amount before operating assembly production in the line. The proposed system provides efficiency on productivity compared with the previous system.

Mixed Model Assembly Line-Balancing Using Simulation (시뮬레이션을 이용한 혼합모델 조립라인밸런싱)

  • 임석진;김경섭;박면웅;김승권
    • Journal of the Korea Society for Simulation
    • /
    • v.11 no.4
    • /
    • pp.69-80
    • /
    • 2002
  • This study deals with the productivity improvement on a flow production system with the consideration of line-balancing. In a flow production system, similar product models are produced on a same assembly line, the predefined process order and the limitation of total worker number. The system can be increased the work-in -process(WIP) inventory and the worker's idle time. In this study, the worker assignment model is developed to assign evenly workload of process to each product model in such a manner that each process has the different number of worker. This worker assignment model is the mathematical model that determines worker number in each process such that the idle time of processes is reduced and the utilization of worker is improved. We use a simulation technique to simulate the production line proposed by the mathematical model and apply real production line. With the result of simulation, this study analyzes the propriety of production line and proposes the alternatives of new production line

  • PDF