• Title/Summary/Keyword: asperity height

Search Result 19, Processing Time 0.022 seconds

Analysis of the Static Friction Coefficient of Contacting Rough Surfaces in Miniature Systems (거친 면 접촉의 정적 마찰계수 해석)

  • 김태종
    • Tribology and Lubricants
    • /
    • v.19 no.4
    • /
    • pp.230-236
    • /
    • 2003
  • In applications such as MEMS and NEMS devices, the adhesion force and contact load may be of the same order of magnitude and the static friction coefficient can be very large. Such large coefficient may result in unacceptable and possibly catastrophic adhesion, stiction, friction and wear. To obtain the static friction coefficient of contacting real surfaces without the assumption of an empirical coefficient value, numerical simulations of the contact load, tangential force, and adhesion force are preformed. The surfaces in dry contact are statistically modeled by a collection of spherical asperities with Gaussian height distribution. The asperity micro-contact model utilized in calculation (the ZMC model), considers the transition from elastic deformation to fully plastic flow of the contacting asperity. The force approach of the modified DMT model using the Lennard-Jones attractive potential is applied to characterize the intermolecular forces. The effect of the surface topography on the static friction coefficient is investigated for cases rough, intermediate, smooth, and very smooth, respectively. Results of the static friction coefficient versus the external force are presented for a wide range of plasticity index and surface energy, respectively. Compared with those obtained by the GW and CEB models, the ZMC model is more complete in calculating the static friction coefficient of rough surfaces.

Shear Tests Under Constant Normal Stiffness for Granite-concrete Interface (화강암 절단면과 콘크리트 부착면에 대한 일정강성도 전단시험)

  • 조천환;이명환;유한규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.1
    • /
    • pp.5-12
    • /
    • 2004
  • The purpose of this paper is to make an understanding of fundamental mechanism of shear behaviour between rock and concrete interfaces in the pile socketed into granite. The interface of pile socketed in rock can be modeled in laboratory tests by resolving the axi-symmetric pile situation into the two dimensional situation under CNS(constant normal stiffness) direct shear condition. In this paper, the granite core samples were used to simulate the interface condition of piles socketed in granite in our country. The samples were prepared in the laboratory to simulate field condition, roughness(angle and height), stress boundary condition, and then tested by CNS direct shear tests. This paper describes shearing behaviour of socket piles into domestic granite through the analysis of CNS test results. It was found out that the peak shear strength increases with the angle of asperity and CNS value, and also the dilation increases with the angle of asperity but decreases with the CNS value.

Grouting Effect of Rock Joint (암반절리면에서의 그라우팅 효과)

  • 이영남;천병식;김대영
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.265-270
    • /
    • 2000
  • AESTRACI: The shmr behior of sawtoothed artrjicial joints grouted with cement milk rm investiguted in the lahotconstant normal stress conditions. Tests were amducted on joints with asperities h i n g inclinations cf 16.7" and 26.6" ,strengths h i n g 15MPa and 47MPa under a given nmge of n o d stresses wrying frcm 0.76 to 1.g MPa md at a freepitching, rolling and dihtmuy. Results show that the gect of asperities on shmr strength increme is signifamt up to as,to grout thidness (t/a) mtio 4 0.3-1.0. Increme of ahesim is the nmn muse cf shmr strength increme in cemmtoothed artificial iointsed artificial ioints

  • PDF

Measurements of Particles Size Distribution and Average Particle Charge in Operating a Bard Disk Drive (하드디스크 드라이브 동작 시 발생하는 입자 크기분포와 입자당 평균 대전량 측정)

  • Lee Jaeho;Park Dongho;Lee Dae-Young;Yoon Ki-Young;Hwang Jungho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.7 s.238
    • /
    • pp.795-804
    • /
    • 2005
  • As the flying height of a slider in a hard disk drive decreases, the slider and disk are more likely to come in contact and generate contamination particles. Since particle contamination can cause serious problems including thermal asperity, it must be prevented to increase storage capacity. When particles are generated in a HDD, particles can be charged and have a few number of elementary charges. In this paper, the size distribution of particles and electrical current due to particle according to the disk rotational speed were measured. Also, the average number of elementary charges was calculated from experimental data. SEM images of particles were obtained by using a particle sampler designed in our laboratory.

A rough flat-joint model for interfacial transition zone in concrete

  • Fengchen Li;J.L. Feng
    • Computers and Concrete
    • /
    • v.34 no.2
    • /
    • pp.231-245
    • /
    • 2024
  • A 3D discrete element model integrating the rough surface contact concept with the flat-joint model is suggested to examine the mechanical characteristics of the interfacial transition zone (ITZ) in concrete. The essential components of our DEM procedure include the calculation of the actual contact area in an element contact-pair related to the bonded factor using a Gaussian probability distribution of asperity height, as well as the determination of the contact probability-relative displacement form using the least square method for further computing the force-displacement of ITZs. The present formulations are implemented in MUSEN, an open source development environment for discrete element analysis that is optimized for high performance computation. The model's meso-parameters are calibrated by using uniaxial compression and splitting tensile simulations, as well as laboratory tests of concrete from the literature. The present model's DEM predictions accord well with laboratory experimental tests of pull-out concrete specimens published in the literature.

Development of a 3D Roughness Measurement System of Rock Joint Using Laser Type Displacement Meter (레이저 변위계를 이용한 암석 절리면의 3차원 거칠기 측정기 개발)

  • 배기윤;이정인
    • Tunnel and Underground Space
    • /
    • v.12 no.4
    • /
    • pp.268-276
    • /
    • 2002
  • In this study, a 3D coordinate measurement system equipped with a laser displacement meter for digitizing rock joint surface was established and the digitized data were used to calculate several roughness parameters. The parameters used in this study were micro avenge inclination $angle(i_{ave})$, average slope of joint $asperity(SL_{ ave})$, root mean square of $i-angle(i_{rms})$, standard deviation of height(SDH), standard deviation of $i-angle(SD_i)$, roughness profile $index(R_P)$, and fractal dimension(D). The relationships between the roughness parameters based on the digitzation of the surface profile were analyzed. Since the measured value varied according to the degree of reflection and the variation of colors at the measuring point, rock joint surface was painted in white to minimize the influence of the surface conditions. The comparison of the measured values and roughness parameters before and after painting revealed the better consequence from measurement on the painted surfaces. Also, effect of measuring interval was studied. As measured interval was increased, roughness parameters were exponentially decreased. The incremental sequence of degree of decrease was $SDH\; i_{ave},\; i_{rms},\; SD_i,\;and\; R_ p-1$. As a result of comparison of parameters from pin-type measurement system and laser type measurement system, all value of parameters were higher when laser-type measurement system was used, except SDH.

A study on the determination of shear strength and the support design of pre-failed rock slope (일차파괴된 암반사면의 전단강도 및 보강설계법 고찰)

  • 조태진;김영호
    • Tunnel and Underground Space
    • /
    • v.5 no.2
    • /
    • pp.104-113
    • /
    • 1995
  • Shear strength of the discontinuity on which the pre-failure of rock slope was occurred during surface excavation was measured through the direct shear test using core samples obtained in-situ. Internal friction angle was increased as the roughness of discontinuity surface(JRC) was increased. Results of the tilt test using core samples of higher JRC also showed very similar trend as those of the direct shear test. When the samples replicated from natural cores were used int he tilt test, results of friction angles showed almost perfect continuation of the residual friction angles from the direct shear test. However, when the gouge material existed in the discontinuity the internal friction angle strongly depended upon the rate of filling thickness to the height of asperity irrespective of the JRC. Based on the results of both direct shear test and tilt test internal friction angle and cohesion of discontinuity, which reflect the in-situ conditions fo pre-sliding failure and also can be used for the optimum design of support system, were assessed. Two kinds of support measures which were expected to increase the stability of rock slope were considered; lowering of slope face angle and installation of rock cable. But, it was found that the first method might lead to more unstable conditions of rock slope when the cohesion of discontinuity plane was negligibly low and in that case the support systems of any kind which could exert actual resisting force were needed to ensure the permanent stability of rock slope.

  • PDF

Numerical Analyses for Evaluating Factors which Influence the Behavioral Characteristics of Side of Rock Socketed Drilled Shafts (암반에 근입된 현장타설말뚝의 주면부 거동에 영향을 미치는 변수분석을 위한 수치해석)

  • Lee, Hyuk-Jin;Kim, Hong-Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6C
    • /
    • pp.395-406
    • /
    • 2006
  • Drilled shafts are a common foundation solution for large concentrated loads. Such piles are generally constructed by drilling through softer soils into rock and the section of the shaft which is drilled through rock contributes most of the load bearing capacity. Drilled shafts derive their bearing capacity from both shaft and base resistance components. The length and diameter of the rock socket must be sufficient to carry the loads imposed on the pile safely without excessive settlements. The base resistance component can contribute significantly to the ultimate capacity of the pile. However, the shaft resistance is typically mobilized at considerably smaller pile movements than that of the base. In addition, the base response can be adversely affected by any debris that is left in the bottom of the socket. The reliability of base response therefore depends on the use of a construction and inspection technique which leaves the socket free of debris. This may be difficult and costly to achieve, particularly in deep sockets, which are often drilled under water or drilling slurry. As a consequence of these factors, shaft resistance generally dominates pile performance at working loads. The efforts to improve the prediction of drilled shaft performance are therefore primarily concerned with the complex mechanisms of shaft resistance development. The shaft resistance only is concerned in this study. The nature of the interface between the concrete pile shaft and the surrounding rock is critically important to the performance of the pile, and is heavily influenced by the construction practices. In this study, the influences of asperity characteristics such as the heights and angles, the strength characteristics and elastic constants of surrounding rock masses and the depth and length of rock socket, et. al. on the shaft resistance of drilled shafts are investigated from elasto-plastic analyses( FLAC). Through the parametric studies, among the parameters, the vertical stress on the top layer of socket, the height of asperity and cohesion and poison's ratio of rock masses are major influence factors on the unit peak shaft resistance.

Investigation of Rock Slope Failures based on Physical Model Study (모형실험을 통한 암반사면의 파괴거동에 대한 연구)

  • Cho, Tae-Chin;Suk, Jae-Uk;Lee, Sung-Am;Um, Jeong-Gi
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.447-457
    • /
    • 2008
  • Laboratory tests for single plane sliding were conducted using the model rock slope to investigate the cut slope deformability and failure mechanism due to combined effect of engineering characteristics such as angle of sliding plane, water force, joint roughness and infillings. Also the possibility of prediction of slope failure through displacement monitoring was explored. The joint roughness was prepared in forms of saw-tooth type having different roughness specifications. The infillings was maintained between upper and lower roughness plane from zero to 1.2 times of the amplitude of the surface projections. Water force was expressed as the percent filling of tension crack from dry (0%) to full (100%), and constantly increased from 0% at the rate of 0.5%/min and 1%/min upto failure. Total of 50 tests were performed at sliding angles of $30^{\circ}$ and $35^{\circ}$ based on different combinations of joint roughness, infilling thickness and water force increment conditions. For smooth sliding plane, it was found that the linear type of deformability exhibited irrespective of the infilling thickness and water force conditions. For sliding planes having roughness, stepping or exponential types of deformability were predominant under condition that the infilling thickness is lower or higher than asperity height, respectively. These arise from the fact that, once the infilling thickness exceeds asperities, strength and deformability of the sliding plane is controlled by the engineering characteristics of the infilling materials. The results obtained in this study clearly show that the water force at failure was found to increase with increasing joint roughness, and to decrease with increasing filling thickness. It seems possible to estimate failure time using the inverse velocity method for sliding plane having exponential type of deformability. However, it is necessary to estimate failure time by trial and error basis to predict failure of the slope accurately.