• Title/Summary/Keyword: aspartame precursor

Search Result 4, Processing Time 0.016 seconds

Synthesis of an Aspartame Precursor Using Immobilized Thermolysin in an Organic Solvent

  • Ahn, Kyung-Seop;Lee, In-Young;Kim, Ik-Hwan;Park, Young-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.3
    • /
    • pp.204-209
    • /
    • 1994
  • The synthesis of N-(benzyloxycarbonyl)-L-aspartyl-L-phenylalanine methylester (Z-APM), a precursor of aspartame, from N-(benzyloxycarbonyl)-L-aspartic acid (Z-Asp) and L-phenylalanine methylester hydrochlolide($L-PM\cdot HCI$) was investigated in a saturated-ethylacetate single phase system using immobilized thermolysin. Among the various supports tested, glyceryl-CPG was found to be most efficient for retaining enzyme activity. The enzyme immobilized onto glyceryl-CPG also showed the highest activity for Z-APM synthesis in saturated ethyl acetate. Z-APM conversion yield in saturated ethylacetate was half of that obtained in an ethyl acetate-buffer two-phase system under the same reaction conditions. However, as the mole ratio of $L-PM \cdot HCI$ to Z-Asp was increased to 4.0, the conversion yield reached 95 %. When continuous synthesis of Z-APM was canied out in a plug flow reactor (PFR) with 80 mM of L-PMㆍHCI and 20 mM of Z-Asp in saturated ethylacetate (pH 5.5), more than 95 % of Z-Asp was converted to Z-APM with a space velocity of 1.16 $hr^{-1} at 40^{\circ}C$. Although the operational stability in PFR was reduced rapidly, more than 80% of initial activity was maintained in CSTR even after a week of operation.

  • PDF

Synthesis of an Aspartame Precursor Using Thermolysin in Organic Two-Phase System (유기용매 이상계에서 Thermolysin에 의한 아스파탐 전구체 생산)

  • 이인영;안경섭;이선복
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.1
    • /
    • pp.61-67
    • /
    • 1992
  • The synthesis of N-benzyloxycarbonyl-L-aspartyl-L-phenylalanine methyl ester(ZAPM), a precursor of aspartame, from N-benzyloxycarbonyl-L-aspartic acid(Z-Asp) and L-phenylalanine methyl ester hydrochloride(L-PM-HCl) was investigated in ethylacetate-MES buffer two-phase system using thermolysin. In organic two-phase system, the degree of spontaneous hydrolysis of L-PM. HCl was significantly reduced with increasing the volume ratio of organic to aqueous phase. Stability of thermolysin in organic two-phase system was found to be higher than that in MES buffer solution. More than 90% of initial enzyme activity was maintained after 10 days of incubation in case that the volume of organic phase was equal to that of buffer phase, while the half life of thermolysin was about 2 days in aqueous buffer solution. The results of partitioning of substrates and product in organic two-phase system showed that the difference in partition coefficients between substrates and product was maximum at pH 5.5. The optimal pH for 2-APM synthesis in organic two-phase system was found to be 5.5-5.8, which is consistent with the value expected from the partition experiments. As the concentration of substrates was increased the conversion yield of Z-APM was increased with concomitant reduction of L-PMqHC1 hydrolysis. In case that the concentration of L-PM-HCl and Z-Asp were 160 mM and 80 mM respectively, the conversion yield of Z-APM reached 90% after 28 hrs of reaction. The yield obtained at different volume ratio of organic phase compares well with the predicted equilibrium constant in biphasic system.

  • PDF

Synthetic Conditions of an Aspartame Precursorby Immobilized Thermolysin (고정화 Thermolysin을 사용한 아스파탐 전구체의 최적 합성조건 선정)

  • Han, Min-Su;Kim, Woo-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.564-570
    • /
    • 1995
  • N-Benzoyl-L-aspartyl-L-phenylalanine methyl ester(BzAPM), a novel aspartame precursor, was investigated for its enzymatic synthesis by immobilized thermolysin using a water-miscible organic solvent system. The substrate used were N-benzoyl-L-aspartic acid(BzAsp) and L-phenylalanine methyl ester (PheOMe). Synthetic conditions such as substrates concentration, temperature, pH, and some metallic ions were varied to study their effects on BzAPM synthesis. The synthetic reaction rate increased linearly as the PheOMe concentration increased at a constant concentration of BzAsp(100 mM), and the maximum reaction rate was obtained at BzAsp concentration of 200 mM when 300 mM PheOMe was used. The optimum pH and temperature were found to be 6.1 and $40^{\circ}C$, respectively. The metallic ions such as $Zn^{2+},\;Mg^{2+},\;Mn^{2+},\;Fe^{2+},\;Pb^{2+}\;and\;Cu^{2+}$ at 5 mM level showed inhibitory effect on BzAPM synthesis, while $Co^{2+}$ and $Ca^{2+}$ ion increased synthesis. $Co^{2+}$ ion was also found to have synergistic effect with $Ca^{2+}$ ion. Benzoic acid, L-phenylalanin and NaCl showed inhibitory effect.

  • PDF

Immobilization of Thermolysin for Synthesis of Aspartame Precursor (아스파탐 전구체의 합성을 위한 Thermolysin의 고정화)

  • Han, Min-Su;Kim, Woo-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.753-756
    • /
    • 1995
  • Optimum conditions for immobilization of thermolysin, a metalloendopeptidase catalyzing synthesis of aspartame precursors, were investigated with using Amberlie XAD-7 as carrier and glutaraldehyde as cross-linking agent. Adsorption of thermolysin onto the carrier was rapid at the initial stage and 96% of the enzyme was adsorbed after 24 hours at $5^{\circ}C$. There was a linear relationship between amount of thermolysin adsorbed and thermolysin loaded upto 300g per liter of carrier. The effective range of cross-linking time, concentration of glutaraldehyde and pH for immobilization of the enzyme were $3{\sim}7\;hours,\;6{\sim}12.5%\;and\;pH\;6.0{\sim}7.0$, respectively. Degree of cross-linking and residual enzyme activity were high when cross-linked for 7 hours with 6% glutaraldehyde or for 3 hours with 12.5% glutaraldehyde. The residual enzyme activity was over 30% under these conditions.

  • PDF