• Title/Summary/Keyword: aser manufacturing system

Search Result 2, Processing Time 0.019 seconds

Manufacture of Press Die Pattern Using Laser System (레이저 가공 시스템을 이용한 프레스 금형용 패턴 제작)

  • 최명수;강경호;김재도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.816-819
    • /
    • 2000
  • Recently the styrofoam has been used fur material of press die pattern. The object of this research is to develope an automated laser system for manufacture of press die pattern which depends chiefly on handwork during its process. After converting 3-D CAD model into cross-sectional shape information, the unnecessary part of the section is vapored away by laser. The depth and width of cut are mainly under the control of laser power and beam feed rate. The optimum manufacturing conditions are obtained by preliminary experiments. It is necessary fur precise styrofoam pattern manufacturing to develope laser system which has sufficient motion accuracy and program or beam path generation and automatic control of this system.

  • PDF

An AFM-based Edge Profile Measuring Instrument for Diamond Cutting Tools

  • Asai, Takemi;Motoki, Takenori;Gao, Wei;Ju, Bing-Feng;Kiyono, Satoshi
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.54-58
    • /
    • 2007
  • This paper describes an atomic force microscope (AFM)-based instrument for measuring the nanoscale cutting edge profiles of diamond cutting tools. The instrument consists of a combined AFM unit and an optical sensor to align the AFM tip with the top of the diamond cutting tool edge over a submicron range. In the optical sensor, a aser beam is emitted from a laser diode along the Y-axis and focused to a small beam spot with a diameter of approximately $10{\mu}m$ at the beam waist, which is then received by a photodiode. The top of the tool edge is first brought into the center of the beam waist by adjusting it in the X-Z-plane while monitoring the variation in the photodiode output. The cutting tool is then withdrawn and its top edge position at the beam center is recorded. The AFM tip can also be positioned at the beam center in a similar manner to align it with the top of the cutting edge. To reduce electronic noise interference on the photodiode output and thereby enhance the alignment accuracy, a technique is applied that can modulate the photodiode output to an AC signal by driving the laser diode with a sinusoidal current. Alignment experiments and edge profile measurements of a diamond cutting tool were carried out to verify the performance of the proposed system.