• Title/Summary/Keyword: artificial satellite image

Search Result 94, Processing Time 0.037 seconds

Development of a Natural Target-based Edge Analysis Method for NIIRS Estimation (NIIRS 추정을 위한 자연표적 기반의 에지분석기법 개발)

  • Kim, Jae-In;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.5
    • /
    • pp.587-599
    • /
    • 2011
  • As one measure of image interpretability, NIIRS(National Imagery Interpretability Rating Scale) has been used. Unlike MTF(Modulation Transfer Function), SNR(Signal to Noise Ratio), and GSD(Ground Sampling Distance), NIIRS can describe the quality of overall image at user's perspective. NIIRS is observed with human observation directly or estimated by edge analysis. For edge analysis specially manufactured artificial target is used commonly. This target, formed with a tarp of black and white patterns, is deployed on the ground and imaged by the satellite. Due to this, the artificial target-based method needs a big expense and can not be performed often. In this paper, we propose a new edge analysis method that enables to estimate NIIRS accurately. In this method, natural targets available in the image are used and characteristics of the target are considered. For assessment of the algorithm, various experiments were carried out. The results showed that our algorithm can be used as an alternative to the artificial target-based method.

A Study on the Complementary Method of Aerial Image Learning Dataset Using Cycle Generative Adversarial Network (CycleGAN을 활용한 항공영상 학습 데이터 셋 보완 기법에 관한 연구)

  • Choi, Hyeoung Wook;Lee, Seung Hyeon;Kim, Hyeong Hun;Suh, Yong Cheol
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.499-509
    • /
    • 2020
  • This study explores how to build object classification learning data based on artificial intelligence. The data has been investigated recently in image classification fields and, in turn, has a great potential to use. In order to recognize and extract relatively accurate objects using artificial intelligence, a large amount of learning data is required to be used in artificial intelligence algorithms. However, currently, there are not enough datasets for object recognition learning to share and utilize. In addition, generating data requires long hours of work, high expenses and labor. Therefore, in the present study, a small amount of initial aerial image learning data was used in the GAN (Generative Adversarial Network)-based generator network in order to establish image learning data. Moreover, the experiment also evaluated its quality in order to utilize additional learning datasets. The method of oversampling learning data using GAN can complement the amount of learning data, which have a crucial influence on deep learning data. As a result, this method is expected to be effective particularly with insufficient initial datasets.

The Resident Space Object Detection Method Based on the Connection between the Fourier Domain Image of the Video Data Difference Frame and the Orbital Velocity Projection

  • Vasilina Baranova;Alexander Spiridonov;Dmitrii Ushakov;Vladimir Saetchnikov
    • Journal of Astronomy and Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.159-170
    • /
    • 2024
  • A method for resident space object detection in video stream processing using a set of matched filters has been proposed. Matched filters are constructed based on the connection between the Fourier spectrum shape of the difference frame and the magnitude of the linear velocity projection onto the observation plane. Experimental data were obtained using the mobile optical surveillance system for low-orbit space objects. The detection problem in testing mode was solved for raw video data with intensity signals from three satellites: KORONAS-FOTON, CUSAT 2/FALCON 9, and GENESIS-1. Difference frames of video data with the AQUA satellite pass were used to construct matched filters. The satellites were automatically detected at points where the difference in the value of their linear velocity projection and the reference satellite was close in value. An initial approximation of the satellites slant range vector and position vector has been obtained based on the values of linear velocity projection onto the frame plane. It has been established that the difference in the inclination angle between the detected satellite intensity signal Fourier image and the reference satellite mask corresponds to the difference in the inclinations of these objects. The proposed method allows for detecting and estimating the initial approximation of the slant range and position vector of artificial and natural space objects, such as satellites, debris, and asteroids.

Automatic Extraction of Land Cover information By Using KOMPSAT-2 Imagery (KOMPSAT-2 영상을 이용한 토지피복정보 자동 추출)

  • Lee, Hyun-Jik;Ru, Ji-Ho;Yu, Young-Geol
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.277-280
    • /
    • 2010
  • There is a need to convert the old low- or medium-resolution satellite image-based thematic mapping to the high-resolution satellite image-based mapping of GSD 1m grade or lower. There is also a need to generate middle- or large-scale thematic maps of 1:5,000 or lower. In this study, the DEM and orthoimage is generated with the KOMPSAT-2 stereo image of Yuseong-gu, Daejeon Metropolitan City. By utilizing the orthoimage, automatic extraction experiments of land cover information are generated for buildings, roads and urban areas, raw land(agricultural land), mountains and forests, hydrosphere, grassland, and shadow. The experiment results show that it is possible to classify, in detail, for natural features such as the hydrosphere, mountains and forests, grassland, shadow, and raw land. While artificial features such as roads, buildings, and urban areas can be easily classified with automatic extraction, there are difficulties on detailed classifications along the boundaries. Further research should be performed on the automation methods using the conventional thematic maps and all sorts of geo-spatial information and mapping techniques in order to classify thematic information in detail.

  • PDF

Analytic Techniques for Change Detection using Landsat (Landast 영상을 이용한 변화탐지 분석 기법 연구)

  • Choi, Chul-Uong;Lee, Chang-Hun;Suh, Yong-Cheol;Kim, Ji-Yong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.3
    • /
    • pp.13-20
    • /
    • 2009
  • Techniques for change detection using satellite images enable efficient detection of natural and artificial changes in use of land through multi-phase images. As for change detection, different results are made based on methods of calibration of satellite images, types of input data, and techniques in change analysis. Thus, an analytic technique that is appropriate to objectives of a study shall be applied as results are different based on diverse conditions even when an identical satellite and an identical image are used for change detection. In this study, Normalized Difference Vegetation Index (NDVI) and Principal Component Analysis (PCA) were conducted after geometric calibration of satellite images which went through absolute and relative radiometric calibrations and change detection analysis was conducted using Image Difference (ID) and Image Rationing (IR). As a result, ID-NDVI showed excellent accuracy in change detection related to vegetation. ID-PCA showed 90% of accuracy in all areas. IR-NDVI had 90% of accuracy while it was 70% and below as for paddies and dry fields${\rightarrow}$grassland. IR-PCA had excellent change detection over all areas.

  • PDF

A Study on Efficient Topography Classification of High Resolution Satelite Image (고해상도 위성영상의 효율적 지형분류기법 연구)

  • Lim, Hye-Young;Kim, Hwang-Soo;Choi, Joon-Seog;Song, Seung-Ho
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.3 s.33
    • /
    • pp.33-40
    • /
    • 2005
  • The aim of remotely sensed data classification is to produce the best accuracy map of the earth surface assigning each pixel to its appropriate category of the real-world. The classification of satellite multi-spectral image data has become tool for generating ground cover map. Many classification methods exist. In this study, MLC(Maximum Likelihood Classification), ANN(Artificial neural network), SVM(Support Vector Machine), Naive Bayes classifier algorithms are compared using IKONOS image of the part of Dalsung Gun, Daegu area. Two preprocessing methods are performed-PCA(Principal component analysis), ICA(Independent Component Analysis). Boosting algorithms also performed. By the combination of appropriate feature selection pre-processing and classifier, the best results were obtained.

  • PDF

Development and application of artificial neural network for landslide susceptibility mapping and its verfication at Janghung, Korea

  • Yu, Young-Tae;Lee, Moung-Jin;Won, Joong-Sun
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.77-82
    • /
    • 2003
  • The purpose of this study is to develop landslide susceptibility analysis techniques using artificial neural network and to apply the developed techniques to the study area of janghung in Korea. Landslide locations were identified in the study area from interpretation of satellite image and field survey data, and a spatial database of the topography, soil, forest and land use were consturced. The 13 landslide-related factors were extracted from the spatial database. Using those factors, landslide susceptibility was analyzed by artificial neural network methods, and the susceptibility map was made with a e15 program. For this, the weights of each factor were determinated in 5 cases by the backpropagation method, which is a type of artificial neural network method. Then the landslide susceptibility indexes were calculated using the weights and the susceptibility maps were made with a GIS to the 5 cases. A GIS was used to efficiently analyze the vast amount of data, and an artificial neural network was turned out be an effective tool to analyze the landslide susceptibility.

  • PDF

Research Trend of the Remote Sensing Image Analysis Using Deep Learning (딥러닝을 이용한 원격탐사 영상분석 연구동향)

  • Kim, Hyungwoo;Kim, Minho;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.819-834
    • /
    • 2022
  • Artificial Intelligence (AI) techniques have been effectively used for image classification, object detection, and image segmentation. Along with the recent advancement of computing power, deep learning models can build deeper and thicker networks and achieve better performance by creating more appropriate feature maps based on effective activation functions and optimizer algorithms. This review paper examined technical and academic trends of Convolutional Neural Network (CNN) and Transformer models that are emerging techniques in remote sensing and suggested their utilization strategies and development directions. A timely supply of satellite images and real-time processing for deep learning to cope with disaster monitoring will be required for future work. In addition, a big data platform dedicated to satellite images should be developed and integrated with drone and Closed-circuit Television (CCTV) images.

Generation of Super-Resolution Benchmark Dataset for Compact Advanced Satellite 500 Imagery and Proof of Concept Results

  • Yonghyun Kim;Jisang Park;Daesub Yoon
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.4
    • /
    • pp.459-466
    • /
    • 2023
  • In the last decade, artificial intelligence's dramatic advancement with the development of various deep learning techniques has significantly contributed to remote sensing fields and satellite image applications. Among many prominent areas, super-resolution research has seen substantial growth with the release of several benchmark datasets and the rise of generative adversarial network-based studies. However, most previously published remote sensing benchmark datasets represent spatial resolution within approximately 10 meters, imposing limitations when directly applying for super-resolution of small objects with cm unit spatial resolution. Furthermore, if the dataset lacks a global spatial distribution and is specialized in particular land covers, the consequent lack of feature diversity can directly impact the quantitative performance and prevent the formation of robust foundation models. To overcome these issues, this paper proposes a method to generate benchmark datasets by simulating the modulation transfer functions of the sensor. The proposed approach leverages the simulation method with a solid theoretical foundation, notably recognized in image fusion. Additionally, the generated benchmark dataset is applied to state-of-the-art super-resolution base models for quantitative and visual analysis and discusses the shortcomings of the existing datasets. Through these efforts, we anticipate that the proposed benchmark dataset will facilitate various super-resolution research shortly in Korea.

Development of an Image Processing System for the Large Size High Resolution Satellite Images (대용량 고해상 위성영상처리 시스템 개발)

  • 김경옥;양영규;안충현
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.4
    • /
    • pp.376-391
    • /
    • 1998
  • Images from satellites will have 1 to 3 meter ground resolution and will be very useful for analyzing current status of earth surface. An image processing system named GeoWatch with more intelligent image processing algorithms has been designed and implemented to support the detailed analysis of the land surface using high-resolution satellite imagery. The GeoWatch is a valuable tool for satellite image processing such as digitizing, geometric correction using ground control points, interactive enhancement, various transforms, arithmetic operations, calculating vegetation indices. It can be used for investigating various facts such as the change detection, land cover classification, capacity estimation of the industrial complex, urban information extraction, etc. using more intelligent analysis method with a variety of visual techniques. The strong points of this system are flexible algorithm-save-method for efficient handling of large size images (e.g. full scenes), automatic menu generation and powerful visual programming environment. Most of the existing image processing systems use general graphic user interfaces. In this paper we adopted visual program language for remotely sensed image processing for its powerful programmability and ease of use. This system is an integrated raster/vector analysis system and equipped with many useful functions such as vector overlay, flight simulation, 3D display, and object modeling techniques, etc. In addition to the modules for image and digital signal processing, the system provides many other utilities such as a toolbox and an interactive image editor. This paper also presents several cases of image analysis methods with AI (Artificial Intelligent) technique and design concept for visual programming environment.