• Title/Summary/Keyword: artificial satellite image

Search Result 94, Processing Time 0.569 seconds

A Study on the Industrial Application of Image Recognition Technology (이미지 인식 기술의 산업 적용 동향 연구)

  • Song, Jaemin;Lee, Sae Bom;Park, Arum
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.7
    • /
    • pp.86-96
    • /
    • 2020
  • Based on the use cases of image recognition technology, this study looked at how artificial intelligence plays a role in image recognition technology. Through image recognition technology, satellite images can be analyzed with artificial intelligence to reveal the calculation of oil storage tanks in certain countries. And image recognition technology makes it possible for searching images or products similar to images taken or downloaded by users, as well as arranging fruit yields, or detecting plant diseases. Based on deep learning and neural network algorithms, we can recognize people's age, gender, and mood, confirming that image recognition technology is being applied in various industries. In this study, we can look at the use cases of domestic and overseas image recognition technology, as well as see which methods are being applied to the industry. In addition, through this study, the direction of future research was presented, focusing on various successful cases in which image recognition technology was implemented and applied in various industries. At the conclusion, it can be considered that the direction in which domestic image recognition technology should move forward in the future.

Development of GRD Measurement Method using Natural Target in Imagery (영상 내 자연표적을 이용한 GRD 측정기법 개발)

  • Kim, Jae-In;Jeong, Jae-Hoon;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.527-536
    • /
    • 2010
  • This paper reports a reliable GRD (Ground Resolved Distance) measurement method of using natural targets instead of the method using artificial targets. For this, we developed an edge profile extraction technique suitable for natural targets. We demonstrated the accuracy and stability of this technique firstly by comparing GRD values generated by this technique visually inspected GRD values for artificial targets taken in laboratory environments. We then demonstrated the feasibility of GRD estimation from natural targets by comparing GRD values from natural targets to those from artificial targets using satellite images containing both artificial and natural targets. The GRDs measured from the proposed method were similar to the values from visual inspection and the GRDs measured from the natural targets were similar to the values from artificial targets. These results support our proposed method is able to measure reliable GRD from natural targets.

Analysis of Tidal Channel Variations Using High Spatial Resolution Multispectral Satellite Image in Sihwa Reclaimed Land, South Korea (고해상도 다분광 인공위성영상자료 기반 시화 간척지 갯골 변화 양상 분석)

  • Jeong, Yongsik;Lee, Kwang-Jae;Chae, Tae-Byeong;Yu, Jaehyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1605-1613
    • /
    • 2020
  • The tidal channel is a coastal sedimentary terrain that plays the most important role in the formation and development of tidal flats, and is considered a very important index for understanding and distribution of tidal flat sedimentation/erosion terrain. The purpose of this study is to understand the changes in tidal channels by a period after the opening of the floodgate of the seawall in the reclaimed land of Sihwa Lake using KOMPSAT high-resolution multispectral satellite image data and to evaluate the applicability and efficiency of high-resolution satellite images. KOMPSAT 2 and 3 images were used for extraction of the tidal channels' lineaments in 2009, 2014, and 2019 and were applied to supervised classification method based on Principal Component Analysis (PCA), Artificial Neural Net (ANN), Matched Filtering (MF), and Spectral Angle Mapper (SAM) and band ratio techniques using Normalized Difference Water Index (NDWI) and MF/SAM. For verification, a numerical map of the National Geographic Information Service and Landsat 7 ETM+ image data were utilized. As a result, KOMPSAT data showed great agreement with the verification data compared to the Landsat 7 images for detecting a direction and distribution pattern of the tidal channels. However, it has been confirmed that there will be limitations in identifying the distribution of tidal channels' density and providing meaningful information related to the development of the sedimentary process. This research is expected to present the possibility of utilizing KOMPSAT image-based high-resolution remote exploration as a way of responding to domestic intertidal environmental issues, and to be used as basic research for providing multi-platform-image-based convergent thematic maps and topics.

Selective Histogram Matching of Multi-temporal High Resolution Satellite Images Considering Shadow Effects in Urban Area (도심지역의 그림자 영향을 고려한 다시기 고해상도 위성영상의 선택적 히스토그램 매칭)

  • Yeom, Jun-Ho;Kim, Yong-Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.2
    • /
    • pp.47-54
    • /
    • 2012
  • Additional high resolution satellite images, other period or site, are essential for efficient city modeling and analysis. However, the same ground objects have a radiometric inconsistency in different satellite images and it debase the quality of image processing and analysis. Moreover, in an urban area, buildings, trees, bridges, and other artificial objects cause shadow effects, which lower the performance of relative radiometric normalization. Therefore, in this study, we exclude shadow areas and suggest the selective histogram matching methods for image based application without supplementary digital elevation model or geometric informations of sun and sensor. We extract the shadow objects first using adjacency informations with the building edge buffer and spatial and spectral attributes derived from the image segmentation. And, Outlier objects like a asphalt roads are removed. Finally, selective histogram matching is performed from the shadow masked multi-temporal Quickbird-2 images.

Monitoring of Vegetation Recovery According to Natural and Artificial Restoration Methods After Forest Fire Damage Using Satellite Imagery (위성영상을 이용한 산불피해 이후 자연복원과 인공복원 방법에 따른 식생회복 모니터링)

  • Hwang, Yeong In;Kang, Won Seok;Park, Ki Hyung;Lee, Kyeong Cheol;Han, Sang Gyun;Kweon, Hyeong Keun
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.24 no.3
    • /
    • pp.33-43
    • /
    • 2022
  • This study was conducted to monitor the vegetation recovery in the areas damaged by the forest fires on the east coast that occurred in April 2000. The study site was a forest fire-damaged area in Samcheok-si, Gangwon-do, and 21 monitoring areas (12 natural restoration sites, 9 artificial restoration sites) were selected to analyze the vegetation recovery trend since 1998. The vegetation recovery trend was compared by calculating the values according to the year using the difference Normalized Burn Ratio (dNBR) and Normalized Difference Vegetation Index (NDVI) based on satellite images (Landsat TM/ETM+ and Sentinel-2A). As the result of this study, all 21 sites, vegetation was recovered, and both groups showed the greatest recovery in summer. In the case of the dNBR, the artificial restored sites showed higher values than the natural restored sites, and in the case of the NDVI, the natural restored sites were higher than the artificially restored sites in summer and autumn. However, the difference between the two groups of natural and artificial restoration sites was not significant. Therefore, the direction of forest restoration after forest fire damage can be effectively restored if properly implemented for the purpose of restoration of the target site.

CROSS-VALIDATION OF ARTIFICIAL NEURAL NETWORK FOR LANDSLIDE SUSCEPTIBILITY ANALYSIS: A CASE STUDY OF KOREA

  • LEE SARO;LEE MOUNG-JIN;WON JOONG-SUN
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.298-301
    • /
    • 2004
  • The aim of this study is to cross-validate of spatial probability model, artificial neural network at Boun, Korea, using a Geographic Information System (GIS). Landslide locations were identified in the Boun, Janghung and Youngin areas from interpretation of aerial photographs, field surveys, and maps of the topography, soil type, forest cover and land use were constructed to spatial data-sets. The factors that influence landslide occurrence, such as slope, aspect and curvature of topography, were calculated from the topographic database. Topographic type, texture, material, drainage and effective soil thickness were extracted from the soil database, and type, diameter, age and density of forest were extracted from the forest database. Lithology was extracted from the geological database, and land use was classified from the Landsat TM image satellite image. Landslide susceptibility was analyzed using the landslide­occurrence factors by artificial neural network model. For the validation and cross-validation, the result of the analysis was applied to each study areas. The validation and cross-validate results showed satisfactory agreement between the susceptibility map and the existing data on landslide locations.

  • PDF

An Efficient and Accurate Artificial Neural Network through Induced Learning Retardation and Pruning Training Methods Sequence

  • Bandibas, Joel;Kohyama, Kazunori;Wakita, Koji
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.429-431
    • /
    • 2003
  • The induced learning retardation method involves the temporary inhibition of the artificial neural network’s active units from participating in the error reduction process during training. This stimulates the less active units to contribute significantly to reduce the network error. However, some less active units are not sensitive to stimulation making them almost useless. The network can then be pruned by removing the less active units to make it smaller and more efficient. This study focuses on making the network more efficient and accurate by developing the induced learning retardation and pruning sequence training method. The developed procedure results to faster learning and more accurate artificial neural network for satellite image classification.

  • PDF

Analysis of Shadow Effect on High Resolution Satellite Image Matching in Urban Area (도심지역의 고해상도 위성영상 정합에 대한 그림자 영향 분석)

  • Yeom, Jun Ho;Han, You Kyung;Kim, Yong Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.93-98
    • /
    • 2013
  • Multi-temporal high resolution satellite images are essential data for efficient city analysis and monitoring. Yet even when acquired from the same location, identical sensors as well as different sensors, these multi-temporal images have a geometric inconsistency. Matching points between images, therefore, must be extracted to match the images. With images of an urban area, however, it is difficult to extract matching points accurately because buildings, trees, bridges, and other artificial objects cause shadows over a wide area, which have different intensities and directions in multi-temporal images. In this study, we analyze a shadow effect on image matching of high resolution satellite images in urban area using Scale-Invariant Feature Transform(SIFT), the representative matching points extraction method, and automatic shadow extraction method. The shadow segments are extracted using spatial and spectral attributes derived from the image segmentation. Also, we consider information of shadow adjacency with the building edge buffer. SIFT matching points extracted from shadow segments are eliminated from matching point pairs and then image matching is performed. Finally, we evaluate the quality of matching points and image matching results, visually and quantitatively, for the analysis of shadow effect on image matching of high resolution satellite image.

Classification of Natural and Artificial Forests from KOMPSAT-3/3A/5 Images Using Deep Neural Network (심층신경망을 이용한 KOMPSAT-3/3A/5 영상으로부터 자연림과 인공림의 분류)

  • Baek, Won-Kyung;Lee, Yong-Suk;Park, Sung-Hwan;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.1965-1974
    • /
    • 2021
  • Satellite remote sensing approach can be actively used for forest monitoring. Especially, it is much meaningful to utilize Korea multi-purpose satellites, an independently operated satellite in Korea, for forest monitoring of Korea, Recently, several studies have been performed to exploit meaningful information from satellite remote sensed data via machine learning approaches. The forest information produced through machine learning approaches can be used to support the efficiency of traditional forest monitoring methods, such as in-situ survey or qualitative analysis of aerial image. The performance of machine learning approaches is greatly depending on the characteristics of study area and data. Thus, it is very important to survey the best model among the various machine learning models. In this study, the performance of deep neural network to classify artificial or natural forests was analyzed in Samcheok, Korea. As a result, the pixel accuracy was about 0.857. F1 scores for natural and artificial forests were about 0.917 and 0.433 respectively. The F1 score of artificial forest was low. However, we can find that the artificial and natural forest classification performance improvement of about 0.06 and 0.10 in F1 scores, compared to the results from single layered sigmoid artificial neural network. Based on these results, it is necessary to find a more appropriate model for the forest type classification by applying additional models based on a convolutional neural network.

An Analysis of Land Cover Classification Methods Using IKONOS Satellite Image (IKONOS 영상을 이용한 토지피복분류 기법 분석)

  • Kang, Nam Yi;Pak, Jung Gi;Cho, Gi Sung;Yeu, Yeon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.3
    • /
    • pp.65-71
    • /
    • 2012
  • Recently the high-resolution satellite images are helpfully using the land cover, status data for the natural resources or environment management. The effective satellite analysis process for these satellite images that require high investment can be increase the effectiveness has become increasingly important. In this Study, the statistical value of the training data is calculated and analyzed during the preprocessing. Also, that is explained about the maximum likelihood classification of traditional classification method, artificial neural network (ANN) classification method and Support Vector Machines(SVM) classification method and then the IKONOS high-resolution satellite imagery was produced the land cover map using each classification method. Each result data had to analyze the accuracy through the error matrix. The results of this study prove that SVM classification method can be good alternative of the total accuracy of about 86% than other classification method.