Object tracking is being studied with various techniques such as Kalman filter and Luenberger tracker. Even in situations, such as the one in which the system model is not well specified, to which existing signal processing techniques are not successfully applicable, it is possible to design artificial neural networks to track objects. In this paper, we propose an artificial neural network, which we call 'maximum-likelihood weighted-average neural network', to continuously track unpredictably moving objects. This neural network does not directly estimate the locations of an object but obtains location estimates by making weighted average combining various results of maximum likelihood tracking with different data lengths. We compare the performance of the proposed system with those of Kalman filter and maximum likelihood object trackers and show that the proposed scheme exhibits excellent performance well adapting the change of object moving characteristics.
Tahwia, Ahmed M.;Heniegal, Ashraf;Elgamal, Mohamed S.;Tayeh, Bassam A.
Computers and Concrete
/
v.27
no.1
/
pp.21-28
/
2021
The Artificial Neural Network (ANN) is a system, which is utilized for solving complicated problems by using nonlinear equations. This study aims to investigate compressive strength, rebound hammer number (RN), and ultrasonic pulse velocity (UPV) of sustainable concrete containing various amounts of fly ash, silica fume, and blast furnace slag (BFS). In this study, the artificial neural network technique connects a nonlinear phenomenon and the intrinsic properties of sustainable concrete, which establishes relationships between them in a model. To this end, a total of 645 data sets were collected for the concrete mixtures from previously published papers at different curing times and test ages at 3, 7, 28, 90, 180 days to propose a model of nine inputs and three outputs. The ANN model's statistical parameter R2 is 0.99 of the training, validation, and test steps, which showed that the proposed model provided good prediction of compressive strength, RN, and UPV of sustainable concrete with the addition of cement.
Korean Journal of Air-Conditioning and Refrigeration Engineering
/
v.12
no.7
/
pp.680-687
/
2000
The objective of this study is to improve the control performance of Ondol system which causes overheating and underheating with 2-position on/off control. For this, a predictive control that determines the suitable on/off positions using Artificial Neural Network(ANN) model was proposed Dynamic analyses using computer simulation show that the neural network used in the predictive control is adapted to each room whose loads variation and thermal characteristics are different. To examine the applicability of this predictive control with ANN it was compared with 2-position on/off control through experiments.
Proceedings of the Korean Geotechical Society Conference
/
2002.10a
/
pp.499-506
/
2002
The purpose of this study is to develop landslide susceptibility analysis techniques using artificial neural networks and to apply the newly developed techniques for assessment of landslide susceptibility to the study area of Yongin in Korea. Landslide locations were identified in the study area from interpretation of aerial Photographs and field survey data, and a spatial database of the topography, soil type and timber cover were constructed. The landslide-related factors such as topographic slope, topographic curvature, soil texture, soil drainage, soil effective thickness, timber age, and timber diameter were extracted from the spatial database. Using those factors, landslide susceptibility and weights of each factor were analyzed by two artificial neural network methods. In the first method, the landslide susceptibility index was calculated by the back propagation method, which is a type of artificial neural network method. Then, the susceptibility map was made with a GIS program. The results of the landslide susceptibility analysis were verified using landslide location data. The verification results show satisfactory agreement between the susceptibility index and existing landslide location data. In the second method, weights of each factor were determinated. The weights, relative importance of each factor, were calculated using importance-free characteristics method of artificial neural networks.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2014.05a
/
pp.417-420
/
2014
Importance of security system to prevent recently increased financial security accident is increasing. Biometric system between the security systems is focused. Fingerprint recognition has many useful aspects such as security, reliability and portability. In this treatise, fingerprint recognition technique is realized by using artificial neural network. Artificial Neural Network(ANN) is a mathematics learning model that makes specific patterns that a program can recognize to show a nerve network's characteristic on a computer. Input fingerprint images have a preprocessing process such as equalization, binarization and thinning. We extract minutiae feature in the images and program can recognize a fingerprint through ANN.
Neural network is a very exciting and generic framework to develop almost all ranges of machine learning technologies and its potential is far beyond its current capabilities. Among other characteristics, neural network acts as associative memory obtained from the values structurally stored in synaptic inherent structure. Due to innate complexity of neural networks system, in its practical implementation and maintenance, multifaceted problems are known to be unavoidable. In this paper, we present design and implementation details of GUI software which can be valuable tool to maintain and develop neural networks. It has capability of displaying every state of synaptic weights with network nodal relation in each learning step.
When a camera is employed for 3D sensing, accurate camera calibration is vital as it is a prerequisite for the subsequent steps of the sensing process. Camera calibration is usually performed by complex mathematical modeling and geometric analysis. On the other contrary, data learning using an artificial neural network can establish a transformation relation between the 3D space and the 2D camera image without explicit camera modeling. However, a neural network requires a large amount of accurate data for its learning. A significantly large amount of time and work using a precise system setup is needed to collect extensive data accurately in practice. In this study, we propose a two-step neural calibration method that is effective when only a small amount of learning data is available. In the first step, the camera projection transformation matrix is determined using the limited available data. In the second step, the transformation matrix is used for generating a large amount of synthetic data, and the neural network is trained using the generated data. Results of simulation study have shown that the proposed method as valid and effective.
Proceedings of the Korea Inteligent Information System Society Conference
/
2000.11a
/
pp.489-497
/
2000
After IMF situation, the money market environment is changing rapidly. Therefore, many companies including financial institutions and many individual investors are concerned about forecasting the money market, and they make an effort to insure the various profit and hedge methods using derivatives like option, futures and swap. In this research, we developed a prototype of forecasting system for KOSPI 200 option, especially call option, trading using artificial neural networks(ANN), To avoid the overfitting problem and the problem involved int the choice of ANN structure and parameters, we employed the ANN ensemble approach. We conducted two types of simulation. One is conducted with the hold signals taken into account, and the other is conducted without hold signals. Even though our models show low accuracy for the sample set extracted from the data collected in the early stage of IMF situation, they perform better in terms of profit and stability than the model that uses only the theoretical price.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2018.05a
/
pp.703-704
/
2018
An artificial neural network design that traces the pupil for the disables suffering from Lou Gehrig disease is introduced. It grasps the position of the pupil required for the communication system. Tensorflow is used for generating and learning the neural network, and the pupil position is determined through the learned neural network. Convolution neural network(CNN) which consists of 2 stages of convolution layer and 2 layers of complete connection layer is implemented for the system.
In this paper, Artificial Neural Network(ANN) is applied to automatic berthing control for a ship. ANN is suitable for a maneuvering such as ship's berthing, because it can describe non-linearity of the system. Multi-layer perceptron which has more than one hidden layer between input layer and output layer is applied to ANN. Using a back-propagation algorithm with teaching data, we trained ANN to get a minimal error between output value and desired one. For the automatic berthing control of a containership, we introduced low speed maneuvering mathematical models. The berthing control with the structure of 8 input layer units in ANN is compared to 6 input layer units. From the simulation results, the berthing conditions are satisfied, even though the berthing paths are different.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.