Kim, Chang-Yong;Hong, Sung-Wan;Bae, Gyu-Jin;Kim, Kwang-Teom;Son, Moo-Rak;Han, Byeong-Hyeon
Proceedings of the Korean Geotechical Society Conference
/
2004.03b
/
pp.946-951
/
2004
ITIS is applied to the several tunnel construction sites in Korea. Tunnel construction properties which are acquired from these sites are transferred to information management server(SQL 2000 server)by client application program in real time. Access permission to DB server depends on the user's roles. Some functions which cannot be embodied in SQL Server are serviced through XML and GMS server is used for spatial data based on GIS part. This system is supposed to give engineers the advantages which are not only easy handling of the program and computerized documentation on every information during construction but also analyzing the acquired data in order to predict the structure of ground and rock mass to be excavated later and show the guideline of construction. Neung-Dong tunnel and Mu-Gua express way tunnel are now under construction and with this system they have 3D visualized map of the geology and tunnel geometry and accumulate database of construction information such as tunnel face mapping results, special notes and pictures of construction and 3D monitoring data, all matters on the stability of rock bolts and shotcrete, and so on. Ground settlement prediction program included in ITIS, based on the artificial neural network(ANN) and supported by GIS technology is applying to the subway tunnel. This prediction tool can make it possible to visualize the ground settlement according to the excavation procedures by contouring the calculated result on 3D GIS map and to assess the damage of buildings in the vicinity of construction site caused by ground settlement.
To develop a coalbed methane(CBM) reservoir, it is important to apply production methods such as drilling, completion, and stimulation which coincide with coal properties. However, the reliability of the selected resulted in most of CBM field is not enough to accept because the selection of production method has been done by empirical decision. As the result, the empirical decision show inaccurate results and need to prove using simulation whether it was true exactly. In this study, the intelligent system has been developed to assist the selection of CBM production method using artificial neural network(ANN). Before the development of the system, technical screening guideline was analyzed by literature survey and the system to select drilling and completion method, and hydraulic fracture fluid was developed by utilizing the guideline. The result as a validation of the developed system showed a high accuracy. In conclusion, it has been confirmed that the developed system can be utilized as a effective tool to select production method in CBM reservoir.
In this paper, prediction of separation trajectory for Two-stage-To-Orbit space launch vehicle has been numerically simulated by using an aerodynamic database based on steady state analysis. Aerodynamic database were obtained for matrix of longitudinal and vertical positions. The steady flow simulations around the launch vehicle have been made by using a 3-D RANS flow solver based on unstructured meshes. For this purpose, a vertex-centered finite-volume method was adopted to discretize inviscid and viscous fluxes. Roe's finite difference splitting was utilized to discretize the inviscid fluxes, and the viscous fluxes were computed based on central differencing. To validate this flow solver, calculations were made for the wind-tunnel experiment model of the LGBB TSTO vehicle configuration on steady state conditions. Aerodynamic database was constructed by using flow simulations based on test matrix from the wind-tunnel experiment. ANN(Artificial Neural Network) was applied to construct interpolation function among aerodynamic variables. Separation trajectory for TSTO launch vehicle was predicted from 6-DOF equation of motion based on the interpolated function. The result of present separation trajectory calculation was compared with the trajectory using experimental database. The predicted results for the separation trajectory shows fair agreement with reference[4] solution.
Journal of the Korea Academia-Industrial cooperation Society
/
v.20
no.12
/
pp.663-670
/
2019
Corrective thermal performance analysis is required for power plants' turbine cycles to determine the performance status of the cycle and improve the economic operation of the power plant. We developed a sectional classification method for the main feed-water flow to make precise corrections for the performance analysis based on the Performance Test Code (PTC) of the American Society of Mechanical Engineers (ASME). The method was developed for the estimation of the turbine cycle performance in a classified section. The classification is based on feature identification of the correlation status of the main feed-water flow measurements. We also developed predictive algorithms for the corrected main feed-water through a Kernel Regression (KR) model for each classified feature area. The method was compared with estimation using an Artificial Neural Network (ANN). The feature classification and predictive model provided more practical and reliable methods for the corrective thermal performance analysis of a turbine cycle.
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.424-424
/
2018
인공신경망(Artificial Neural Network; ANN)은 뇌에 존재하는 생물학적 신경세포와 이들의 신호처리 과정을 수학적으로 묘사하여 뇌가 나타내는 지능적 형태의 반응을 구현한 것이다. 인공신경망은 학습(training)을 통해 입력과 출력으로 구성되는 하나의 시스템을 병렬적이고 비선형적으로 구축할 수 있으며, 유연한 모델링 특성으로 인하여 시스템 예측, 패턴인식, 분류 및 공정제어 등의 다양한 분야에서 활용되고 있다. 인공신경망에 대한 최초의 이론은 Muculloch and Pitts(1943)가 제안한 Perceptron에서 시작 되었으며, 기본적인 학습기법인 오차역전파 기법(back-propagation Algorithm) 이 1980년대에 들어 수학적으로 정립된 이후 여러 분야에서 활용되기 시작하였다). 본 연구에서는 하도추적, 구체적으로는 상류단의 복수의 수위관측을 이용하여 하류단의 수위를 예측하기 위하여 인공신경망 모델을 구성하였다. 대상하도는 금강유역의 용담댐과 대청댐 사이의 본류이며, 상류단 입력자료로써 본류에 있는 수통, 호탄 관측소 관측수위와 지류인 송천 관측소 관측수위를 고려하였다. 출력 값으로는 하류단의 옥천 관측소 수위를 3시간 및 6시간의 선행시간으로 예측하도록 인공신경망 모형을 구성하였다. 인공신경망의 학습(testing), 시험(testing), 검증(validation)을 위해 2000년부터 2012년까지 13년간의 시수위자료를 이용하여 학습을 진행하였으며, 2013년부터 2014년의 2년간의 수위자료를 이용한 시험을 통해 최적의 모형을 선정하였다. 또한 선정된 최적의 모형을 이용하여 2015년부터 2016년까지의 수위예측을 수행하였다.
Kim, Won Jin;Lee, Yong Gwan;Jung, Chung Gil;Kim, Seong Joon
Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.35-35
/
2019
본 연구에서는 분포형 수문 모형 Drying Stream Assessment Tool and Water Flow Tracking (DrySAT-WTF)을 활용해 우리나라의 1976년부터 2015년까지의 유출량을 산정하고, 이를 다층퍼셉트론(Multi Layer Perceptron) 인경신경망 모형(Artificial Neural Network Model)에 적용해 미래 유출을 예측하였다. DrySAT-WFT은 전국 표준 유역을 대상으로 하천 건천화 원인 추적 및 평가를 위해 개발된 모형으로 유출모의를 위한 기상자료 외에 건천화 영향 요소를 고려하기 위한 산림 높이, 도로망, 지하수 이용량, 토지이용, 토심 변화에 대한 DB를 적용 가능한 것이 특징이다. DrySAT-WFT를 위한 기상자료로 모의 기간에 대한 일별 강우량, 상대습도, 평균풍속, 평균 및 최고, 최저 기온, 일조시간을 구축하였으며, 연대별 건천화 영향 요소 DB를 구축하여 적용하였다. 전국 다목적 댐 보 12지점의 유량을 활용해 모형의 보정(2005-2010) 및 검증(2011-2015)을 실시한 결과, 평균 결정계수(Coefficient of determination, $R^2$)는 0.76, 모형효율성계수(Nash-Sutcliffe efficiency, NSE)는 0.62, 평균제곱근오차(average root mean square error, RMSE)는 3.09로 신뢰성 있는 유출 모의 결과를 나타내었다. 미래 유출량 예측을 위한 MLP-ANN은 1976년부터 2015년까지의 유출 모의 결과를 Training Set으로 훈련하여 $R^2$가 0.5 이상이 되어 신뢰성을 확보하였고, 2016년부터 2018년까지의 기간을 1개월 단위로 실제 유출량과 예측 유출량을 비교하며 적용성을 검증 및 향상시켰다.
Convertible bonds are financial products that contain the nature of both bonds and shares, which are generally issued by companies with lower credit ratings to increase liquidity. Conversion bonds rely on qualitative judgment in the past, although decision-making on whether and when to exercise the right to convert is the most important issue. Therefore, this paper proposes to apply artificial neural network techniques to scientifically determine the exercise of conversion rights. We distinguish between a total of 1,800 learning data published in the past and 200 predictive experimental data and build an artificial neural network learning model. As a result, the parity performance in most groups was excellent, achieving an average excess of about 10% or more. In particular, groups 3-6 recorded an average excess of about 20% and group 6 recorded an average excess of about 37%. This paper is meaningful in that it focused on solving decision problems by converging and applying machine learning techniques, a representative technology of the fourth industry, to the financial sector.
Kim, Deokwhan;Kim, Jungwook;Joo, Hongjun;Han, Daegun;Kim, Hung Soo
Membrane and Water Treatment
/
v.10
no.1
/
pp.1-11
/
2019
The Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) predicted that recent extreme hydrological events would affect water quality and aggravate various forms of water pollution. To analyze changes in water quality due to future climate change, input data (precipitation, average temperature, relative humidity, average wind speed and sunlight) were established using the Representative Concentration Pathways (RCP) 8.5 climate change scenario suggested by the AR5 and calculated the future runoff for each target period (Reference:1989-2015; I: 2016-2040; II: 2041-2070; and III: 2071-2099) using the semi-distributed land use-based runoff processes (SLURP) model. Meteorological factors that affect water quality (precipitation, temperature and runoff) were inputted into the multiple linear regression analysis (MLRA) and artificial neural network (ANN) models to analyze water quality data, dissolved oxygen (DO), biological oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (SS), total nitrogen (T-N) and total phosphorus (T-P). Future water quality prediction of the Anseongcheon River basin shows that DO at Gongdo station in the river will drop by 35% in autumn by the end of the $21^{st}$ century and that BOD, COD and SS will increase by 36%, 20% and 42%, respectively. Analysis revealed that the oxygen demand at Dongyeongyo station will decrease by 17% in summer and BOD, COD and SS will increase by 30%, 12% and 17%, respectively. This study suggests that there is a need to continuously monitor the water quality of the Anseongcheon River basin for long-term management. A more reliable prediction of future water quality will be achieved if various social scenarios and climate data are taken into consideration.
Mirzaeiabdolyousefi, Majid;Mahmoodzadeh, Arsalan;Ibrahim, Hawkar Hashim;Rashidi, Shima;Majeed, Mohammed Kamal;Mohammed, Adil Hussein
Geomechanics and Engineering
/
v.30
no.1
/
pp.11-26
/
2022
One of the most important issues in tunneling, is the squeezing phenomenon. Squeezing can occur during excavation or after the construction of tunnels, which in both cases could lead to significant damages. Therefore, it is important to predict the squeezing and consider it in the early design stage of tunnel construction. Different empirical, semi-empirical and theoretical-analytical methods have been presented to determine the squeezing. Therefore, it is necessary to examine the ability of each of these methods and identify the best method among them. In this study, squeezing in a part of the Alborz service tunnel in Iran was estimated through a number of empirical, semi- empirical and theoretical-analytical methods. Among these methods, the most robust model was used to obtain a database including 300 data for training and 33 data for testing in order to develop a machine learning (ML) method. To this end, three ML models of Gaussian process regression (GPR), artificial neural network (ANN) and support vector regression (SVR) were trained and tested to propose a robust model to predict the squeezing phenomenon. A comparative analysis between the conventional and the ML methods utilized in this study showed that, the GPR model is the most robust model in the prediction of squeezing phenomenon. The sensitivity analysis of the input parameters using the mutual information test (MIT) method showed that, the most sensitive parameter on the squeezing phenomenon is the tangential strain (ε_θ^α) parameter with a sensitivity score of 2.18. Finally, the GPR model was recommended to predict the squeezing phenomenon in tunneling projects. This work's significance is that it can provide a good estimation of the squeezing phenomenon in tunneling projects, based on which geotechnical engineers can take the necessary actions to deal with it in the pre-construction designs.
Nowadays, Deep Learning (DL) technology is being used in several government departments. South Korea imports a lot of seafood. If the demand for fishery products is not accurately predicted, then there will be a shortage of fishery products and the price of the fishery product may rise sharply. So, South Korea's Ministry of Ocean and Fisheries is attempting to accurately predict seafood imports using deep learning. This paper introduces the solution for the fish import prediction in South Korea using the Long Short-Term Memory (LSTM) method. It was found that there was a huge gap between the sum of consumption and export against the sum of production especially in the case of two species that are Hairtail and Pollock. An import prediction is suggested in this research to fill the gap with some advanced Deep Learning methods. This research focuses on import prediction using Machine Learning (ML) and Deep Learning methods to predict the import amount more precisely. For the prediction, two Deep Learning methods were chosen which are Artificial Neural Network (ANN) and Long Short-Term Memory (LSTM). Moreover, the Machine Learning method was also selected for the comparison between the DL and ML. Root Mean Square Error (RMSE) was selected for the error measurement which shows the difference between the predicted and actual values. The results obtained were compared with the average RMSE scores and in terms of percentage. It was found that the LSTM has the lowest RMSE score which showed the prediction with higher accuracy. Meanwhile, ML's RMSE score was higher which shows lower accuracy in prediction. Moreover, Google Trend Search data was used as a new feature to find its impact on prediction outcomes. It was found that it had a positive impact on results as the RMSE values were lowered, increasing the accuracy of the prediction.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.