• Title/Summary/Keyword: artificial neural network(ANN)

Search Result 1,070, Processing Time 0.042 seconds

Development of a sdms (Self-diagnostic monitoring system) with prognostics for a reciprocating pump system

  • Kim, Wooshik;Lim, Chanwoo;Chai, Jangbom
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1188-1200
    • /
    • 2020
  • In this paper, we consider a SDMS (Self-Diagnostic Monitoring System) for a reciprocating pump for the purpose of not only diagnosis but also prognosis. We have replaced a multi class estimator that selects only the most probable one with a multi label estimator such that we are able to see the state of each of the components. We have introduced a measure called certainty so that we are able to represent the symptom and its state. We have built a flow loop for a reciprocating pump system and presented some results. With these changes, we are not only able to detect both the dominant symptom as well as others but also to monitor how the degree of severity of each component changes. About the dominant ones, we found that the overall recognition rate of our algorithm is about 99.7% which is slightly better than that of the former SDMS. Also, we are able to see the trend and to make a base to find prognostics to estimate the remaining useful life. With this we hope that we have gone one step closer to the final goal of prognosis of SDMS.

Dextrous sensor hand for the intelligent assisting system - IAS

  • Hashimoto, Hideki;Buss, Martin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.124-129
    • /
    • 1992
  • The goal of the proposed Intelligent Assisting System - IAS is to assist human operators in an intelligent way, while leaving decision and goal planning instances for the human. To realize the IAS the very important issue of manipulation skill identification and analysis has to be solved, which then is stored in a Skill Data Base. Using this data base the IAS is able to perform complex manipulations on the motion control level and to assist the human operator flexibly. We propose a model for manipulation skill based on the dynamics of the grip transformation matrix, which describes the dynamic transformation between object space and finger joint space. Interaction with a virtual world simulator allows the calculation and feedback of appropriate forces through controlled actuators of the sensor glove with 10 degrees-of-freedom. To solve the sensor glove calibration problem, we learn the nonlinear calibration mapping by an artificial neural network(ANN). In this paper we also describe the experimental system setup of the skill acquisition and transfer system as a first approach to the IAS. Some simple manipulation examples and simulation results show the feasibility of the proposed manipulation skill model.

  • PDF

Process Map for Improving the Dimensional Accuracy in the Multi-Stage Drawing Process of Rectangular Bar with Various Aspect Ratio (다양한 종횡비의 직사각바 다단 인발공정에서 치수정도 향상을 위한 프로세스 맵)

  • Ko, P.S.;Kim, J.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.27 no.3
    • /
    • pp.154-159
    • /
    • 2018
  • In the rectangular bar multi-stage drawing process, the cross-section dimensional accuracy of the rectangular bar varies depending on the aspect ratio and process conditions. It is very important to predict the dimensional error of the cross-section occurring in the multi-stage drawing process according to the aspect ratio of the rectangular bar and the half die angle of each pass. In this study, a process map for improving the dimensional accuracy according to the aspect ratio was derived in the drawing process of a rectangular bar. FE-simulation of the multi-stage shape drawing process was carried out with four types of rectangular bar. The results of the FE-simulation were trained to the nonlinear relationship between the shape parameters using an Artificial Neural Network (ANN), and the process maps were derived from them. The optimum half die angles were determined from the process maps on the dimensional accuracy. The validity of the suggested process map for aspect ratios 1.25~2:1 were verified through FE-simulation and experimentation.

Comparative Application of Various Machine Learning Techniques for Lithology Predictions (다양한 기계학습 기법의 암상예측 적용성 비교 분석)

  • Jeong, Jina;Park, Eungyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.3
    • /
    • pp.21-34
    • /
    • 2016
  • In the present study, we applied various machine learning techniques comparatively for prediction of subsurface structures based on multiple secondary information (i.e., well-logging data). The machine learning techniques employed in this study are Naive Bayes classification (NB), artificial neural network (ANN), support vector machine (SVM) and logistic regression classification (LR). As an alternative model, conventional hidden Markov model (HMM) and modified hidden Markov model (mHMM) are used where additional information of transition probability between primary properties is incorporated in the predictions. In the comparisons, 16 boreholes consisted with four different materials are synthesized, which show directional non-stationarity in upward and downward directions. Futhermore, two types of the secondary information that is statistically related to each material are generated. From the comparative analysis with various case studies, the accuracies of the techniques become degenerated with inclusion of additive errors and small amount of the training data. For HMM predictions, the conventional HMM shows the similar accuracies with the models that does not relies on transition probability. However, the mHMM consistently shows the highest prediction accuracy among the test cases, which can be attributed to the consideration of geological nature in the training of the model.

Development of Nonlinear Downscaling Technique to Use GCM Data (GCM 자료를 활용하기 위한 비선형 축소기법의 개발)

  • Kim, Soo-Jun;Lee, Keon-Haeng;Kim, Hung-Soo;Jun, Hwan-Don
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.73-73
    • /
    • 2011
  • 일반적으로 미래 기후자료를 산출하기 위하여 기후 시스템을 수치화한 GCM에 의한 결과를 사용한다. 하지만 GCM의 시공간적인 해상도의 문제로 기후변화에 따른 수자원 영향 분석을 위해서는 축소기법의 적용과정이 필요하다. 이를 위하여 전세계적으로 통계학적 방법에 의한 일기발생기를 이용한 축소기법 방법이 많이 이용되고 있다. 하지만 일기발생기에 의한 방법은 월 평균값의 연간 변동성이나 계절적 변화를 재현하는데 한계가 있는 것이 사실이다. 본 연구에서는 이러한 일기 발생기의 한계가 강우의 발생 특성이 평균과 표준편차로 대표되는 통계학적 기법에 근거하고 있기 때문이라고 파악하였다. 따라서 최저온도, 최고온도, 강수량, 상대습도, 풍속, 일사량과 같이 6개의 기상자료를 선정하여 비선형 관계를 고려할 수 있는 기법을 적용하고자 하였다. 이를 위하여 SRES A1B 기후변화 시나리오에 의한 CNCM3 기후모형의 결과를 이용하였고 각 관측소 마다 다양하게 발생하는 강우 특성은 과거의 강우 특성과 유사할 것이라는 가정하에 공간적 축소기법으로 인공 신경망(ANN: Artificial Neural Network) 을 적용하고 시간적 축소기법으로 최근린(NN: Nearest Neighbor) 방법과 유전자 알고리즘(GA: Genetic Algorithm)을 적용하는 기법을 함께 제시하였다. 이러한 기법들을 실제 남한강 유역의 기상관측소 지점으로 적용하여 검증한 결과 모의된 대부분의 기상자료가 관측치를 비교적 잘 재현하였다. 본 연구에서 제시한 비선형 축소기법은 추후 기후변화 연구에 중요한 방법론으로 활용될 수 있을 것으로 기대된다.

  • PDF

Performance Evaluation of Regenerative Braking System Based on a HESS in Extended Range BEV

  • Kiddee, Kunagone;Khan-Ngern, Werachet
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1965-1977
    • /
    • 2018
  • This paper proposed a regenerative braking system (RBS) strategy for battery electric vehicles (BEVs) with a hybrid energy storage system (HESS) driven by a brushless DC (BLDC) motor. In the regenerative braking mode of BEV, the BLDC motor works as a generator. Consequently, the DC-link voltage is boosted and regenerative braking energy is transferred to a battery and/or ultracapacitor (UC) using a suitable switching pattern of the three-phase inverter. The energy stored in the HESS through reverse current flow can be exploited to improve acceleration and maintain the batteries from frequent deep discharging during high power mode. In addition, the artificial neural network (ANN)-based RBS control mechanism was utilized to optimize the switching scheme of the vehicular breaking force distribution. Furthermore, constant torque braking can be regulated using a PI controller. Different simulation and experiments were implemented and carried out to verify the performance of the proposed RBS strategy. The UC/battery RBS also contributed to improved vehicle acceleration and extended range BEVs.

Real-time detection on FLUSH+RELOAD attack using Performance Counter Monitor (Performance Counter Monitor 를 이용한 FLUSH+RELOAD 공격 실시간 탐지 기술)

  • Cho, Jong-Hyeon;Kim, Tae-Hyun;Shin, Youngjoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.166-169
    • /
    • 2018
  • 캐시 부채널 공격 중 하나인 FLUSH+RELOAD 공격은 높은 해상도와 적은 오류로 그 위험성이 높고, 여러가지 프로그램에서도 적용되어 개인정보의 유출에 대한 위험성까지 증명 되었다. 따라서 이 공격을 막기 위해 실시간으로 감지 할 수 있어야 할 필요성이 있다. 본 연구에서는 4가지 실험을 통하여 이 FLUSH+RELOAD 공격을 받을 때 PCM(Performance Counter Monitor)를 사용해 각각의 counter들의 값의 변화를 관찰하여 3가지 중요한 요인에 의해 공격 탐지를 할 수 있다는 것을 발견하였다. 이를 이용하여 머신 러닝의 logistic regression과 ANN(Artificial Neural Network)를 사용해 결과에 대한 각각 학습을 시킨 뒤, 실시간으로 공격에 대한 탐지를 할 수 있는 프로그램을 제작하였다. 일정한 시간동안 공격을 진행하여 모든 공격을 감지하는데 성공하였고, 상대적으로 적은 오탐률을 보여주었다.

Using Hidden Markov Model for Stock Flow Forecasting (주식 예측을 위한 은닉 마코프 모델의 이용)

  • Park, Hyoung-Joon;Hong, Da-Hye;Kim, Moon-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1860-1861
    • /
    • 2007
  • 주식 예측은 주식 시장이 생긴 이래로 투자자들이나, 금융 전문가들 사이에서 매우 중요한 일이 되어 왔다. 그러한 중요성으로 인해 엘리오트 파동이론과 같은 많은 주식 예측 기법이 제시되었고, 또한 이러한 예�G의 자동화를 위해 인공지능분야에서도 많은 연구가 있어왔다. 주가 예측에 패턴인식 방법을 적용한 기존의 연구로는 주로 ANN(Artificial Neural Network)방식과 은닉 마코프 모델(HMM, Hidden Markov Model)이 있었고, 본 논문에서는 HMM을 이용한 방법을 제안한다. HMM은 시간 순차적인 패턴을 가지는 모델의 인식에 좋은 성능을 보여 주로 음성인식 분야에서 많이 이용되고 있다. 주식 변화 역시 시간 순차적 흐름에 따라 기울기의 변화가 어느 정도 일정한 패턴을 가지는 성질이 있고, 이것은 HMM을 이용한 패턴인식으로 주식의 앞으로의 변화를 예측하기에 적합한 요인이 된다. 본 논문에서는 이를 위해 다음과 같은 과정을 걸쳤다. 첫 번째로 실존 회사의 장기간의 주식 테이터를 기반으로 여러 개의 HMM모델을 학습 하였다. 두 번째로 예측하고자 하는 기간 이전의 주식 변화 데이터를 입력으로 하여, 이전에 이와 유사한 패턴이 있었는지를 HMM을 통해 알아냈다. 마지막으로 이렇게 알아낸 패턴을 이용하여 앞으로의 주식 변화를 예측하였다. 실험은 실제 주식 변화와 예측값의 비교를 통해 정확도를 검증하였다.

  • PDF

Development of Artificial Neural Network Model for Prediction of Water Quality Parameters in Large Rivers with Tributary Inflow (지천유입이 있는 대하천에서 수질예측을 위한 인공신경망모델의 개발)

  • Seo, Il Won;Yun, Se Hun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.141-141
    • /
    • 2017
  • 본 연구에서는 대하천의 8개의 수질인자(수온, 용존산소, 수소이온농도, 전기전도도, 총질소, 총인, 탁도, 클로로필-a)를 예측할 수 있는 인공신경망모델을 개발하였다. 인공신경망모델(ANN)은 수질데이터가 가지는 불확실성 및 비정상성, 복잡한 상호관련성에 효과적으로 대응할 수 있는 데이터기반 모델이다. 데이터기반 모델의 특성상 예측정확도를 높이기 위해서 양질의 입력데이터를 구성하는 것이 가장 중요하다. 때문에 각각의 수질인자뿐만 아니라 기상학적 인자 또한 예측을 위한 입력자료로 사용하였으며, 요인분석 및 층화표층추출법을 적용하여 입력데이터를 구성하였고 앙상블기법을 이용하여 추가적으로 예측의 정확도를 향상시켰다. 개발된 모델을 이용하여 지천유입이 있는 북한강의 수질자료를 예측한 결과 탁도를 제외한 7개의 수질인자 모두 0.85 이상의 설명력을 보였으며, 실측값과 예보값을 비교해본 결과 평균적으로 10% 미만의 에러값을 나타냈다. 요인분석을 통하여 연관성있는 인자를 입력인자로 추가한 경우 향상된 결과값을 보였주었으며, 앙상블기법을 적용한 결과 정확도 면에서 큰 향상을 보여주었다.

  • PDF

Modeling the Density and Hardness of AA2024-SiC Nanocomposites

  • Jeon, A-Hyun;Kim, Hong In;Sung, Hyokyung;Reddy, N.S.
    • Journal of Powder Materials
    • /
    • v.26 no.4
    • /
    • pp.275-281
    • /
    • 2019
  • An artificial neural network (ANN) model is developed for the analysis and simulation of correlation between flake powder metallurgy parameters and properties of AA2024-SiC nanocomposites. The input parameters of the model are AA 2024 matrix size, ball milling time, and weight percentage of SiC nanoparticles and the output parameters are density and hardness. The model can predict the density and hardness of the unseen test data with a correlation of 0.986 beyond the experimental data. A user interface is designed to predict properties at new instances. We have used the model to simulate the individual as well as the combined influence of parameters on the properties. Moreover, we have analyzed the calculated results from the powder metallurgical point of view. The developed model can be used as a guide for further composite development.