• Title/Summary/Keyword: artificial neural

Search Result 3,657, Processing Time 0.032 seconds

A Study on Neural Networks Forecast Model of Deep Excavation Wall Movements (인공신경망 기법을 활용한 굴착공사 흙막이 변위량 예측에 관한 연구)

  • Shin, Han-Woo;Kim, Gwang-Hee;Kim, Young-Seok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.3
    • /
    • pp.131-137
    • /
    • 2007
  • To predict deep excavation wall movements is important in the urban areas considering the cost and the safety in construction. Failing to estimate deep excavation wall movements in advance causes too many problems in the projects. The purpose of this study is to propose the forecast model of deep excavation wall movements using artificial neural networks. The data of the Deep Excavation Wall Movements which were done form Long research is used of Artificial neural networks training and apply the real construction work measured data to the Artificial neural networks model. Applying the artificial neural networks to forecast the deep excavation wall movements can significantly contribute to identifying and preventing the accident in the overall construction work.

Correlation of Liquid-Liquid Equilibrium of Four Binary Hydrocarbon-Water Systems, Using an Improved Artificial Neural Network Model

  • Lv, Hui-Chao;Shen, Yan-Hong
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.3
    • /
    • pp.370-376
    • /
    • 2013
  • A back propagation artificial neural network model with one hidden layer is established to correlate the liquid-liquid equilibrium data of hydrocarbon-water systems. The model has four inputs and two outputs. The network is systematically trained with 48 data points in the range of 283.15 to 405.37K. Statistical analyses show that the optimised neural network model can yield excellent agreement with experimental data(the average absolute deviations equal to 0.037% and 0.0012% for the correlated mole fractions of hydrocarbon in two coexisting liquid phases respectively). The comparison in terms of average absolute deviation between the correlated mole fractions for each binary system and literature results indicates that the artificial neural network model gives far better results. This study also shows that artificial neural network model could be developed for the phase equilibria for a family of hydrocarbon-water binaries.

Predicting the shear strength of reinforced concrete beams using Artificial Neural Networks

  • Asteris, Panagiotis G.;Armaghani, Danial J.;Hatzigeorgiou, George D.;Karayannis, Chris G.;Pilakoutas, Kypros
    • Computers and Concrete
    • /
    • v.24 no.5
    • /
    • pp.469-488
    • /
    • 2019
  • In this research study, the artificial neural networks approach is used to estimate the ultimate shear capacity of reinforced concrete beams with transverse reinforcement. More specifically, surrogate approaches, such as artificial neural network models, have been examined for predicting the shear capacity of concrete beams, based on experimental test results available in the pertinent literature. The comparison of the predicted values with the corresponding experimental ones, as well as with available formulas from previous research studies or code provisions highlight the ability of artificial neural networks to evaluate the shear capacity of reinforced concrete beams in a trustworthy and effective manner. Furthermore, for the first time, the (quantitative) values of weights for the proposed neural network model, are provided, so that the proposed model can be readily implemented in a spreadsheet and accessible to everyone interested in the procedure of simulation.

Autonomous Mobile Robots Navigation Using Artificial Immune Networks and Neural Networks (인공 면역망과 신경회로망을 이용한 자율이동로봇 주행)

  • 이동제;김인식;이민중;최영규
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.8
    • /
    • pp.471-481
    • /
    • 2003
  • The acts of biological immune system are similar to the navigation for autonomous mobile robots under dynamically changing environments. In recent years, many researchers have studied navigation algorithms using artificial immune networks. Conventional artificial immune algorithms consist of an obstacle-avoidance behavior and a goal-reaching behavior. To select a proper action, the navigation algorithm should combine the obstacle-avoidance behavior with the goal-reaching behavior. In this paper, the neural network is employed to combine the behaviors. The neural network is trained with the surrounding information. the outputs of the neural network are proper combinational weights of the behaviors in real-time. Also, a velocity control algorithm is constructed with the artificial immune network. Through a simulation study and experimental results for a autonomous mobile robot, we have shown the validity of the proposed navigation algorithm.

Artificial Neural Network: Understanding the Basic Concepts without Mathematics

  • Han, Su-Hyun;Kim, Ko Woon;Kim, SangYun;Youn, Young Chul
    • Dementia and Neurocognitive Disorders
    • /
    • v.17 no.3
    • /
    • pp.83-89
    • /
    • 2018
  • Machine learning is where a machine (i.e., computer) determines for itself how input data is processed and predicts outcomes when provided with new data. An artificial neural network is a machine learning algorithm based on the concept of a human neuron. The purpose of this review is to explain the fundamental concepts of artificial neural networks.

Training Artificial Neural Networks and Convolutional Neural Networks using WFSO Algorithm (WFSO 알고리즘을 이용한 인공 신경망과 합성곱 신경망의 학습)

  • Jang, Hyun-Woo;Jung, Sung Hoon
    • Journal of Digital Contents Society
    • /
    • v.18 no.5
    • /
    • pp.969-976
    • /
    • 2017
  • This paper proposes the learning method of an artificial neural network and a convolutional neural network using the WFSO algorithm developed as an optimization algorithm. Since the optimization algorithm searches based on a number of candidate solutions, it has a drawback in that it is generally slow, but it rarely falls into the local optimal solution and it is easy to parallelize. In addition, the artificial neural networks with non-differentiable activation functions can be trained and the structure and weights can be optimized at the same time. In this paper, we describe how to apply WFSO algorithm to artificial neural network learning and compare its performances with error back-propagation algorithm in multilayer artificial neural networks and convolutional neural networks.

The use of neural networks for the prediction of swell pressure

  • Erzin, Yusuf
    • Geomechanics and Engineering
    • /
    • v.1 no.1
    • /
    • pp.75-84
    • /
    • 2009
  • Artificial neural networks (ANNs) are a new type of information processing system based on modeling the neural system of human brain. The prediction of swell pressures from easily determined soil properties, namely, initial dry density, initial water content, and plasticity index, have been investigated by using artificial neural networks. The results of the constant volume swell tests in oedometers, performed on statically compacted specimens of Bentonite-Kaolinite clay mixtures with varying soil properties, were trained in an ANNs program and the results were compared with the experimental values. It is observed that the experimental results coincided with ANNs results.

Design Of Intrusion Detection System Using Background Machine Learning

  • Kim, Hyung-Hoon;Cho, Jeong-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.5
    • /
    • pp.149-156
    • /
    • 2019
  • The existing subtract image based intrusion detection system for CCTV digital images has a problem that it can not distinguish intruders from moving backgrounds that exist in the natural environment. In this paper, we tried to solve the problems of existing system by designing real - time intrusion detection system for CCTV digital image by combining subtract image based intrusion detection method and background learning artificial neural network technology. Our proposed system consists of three steps: subtract image based intrusion detection, background artificial neural network learning stage, and background artificial neural network evaluation stage. The final intrusion detection result is a combination of result of the subtract image based intrusion detection and the final intrusion detection result of the background artificial neural network. The step of subtract image based intrusion detection is a step of determining the occurrence of intrusion by obtaining a difference image between the background cumulative average image and the current frame image. In the background artificial neural network learning, the background is learned in a situation in which no intrusion occurs, and it is learned by dividing into a detection window unit set by the user. In the background artificial neural network evaluation, the learned background artificial neural network is used to produce background recognition or intrusion detection in the detection window unit. The proposed background learning intrusion detection system is able to detect intrusion more precisely than existing subtract image based intrusion detection system and adaptively execute machine learning on the background so that it can be operated as highly practical intrusion detection system.

Displacement prediction in geotechnical engineering based on evolutionary neural network

  • Gao, Wei;He, T.Y.
    • Geomechanics and Engineering
    • /
    • v.13 no.5
    • /
    • pp.845-860
    • /
    • 2017
  • It is very important to study displacement prediction in geotechnical engineering. Nowadays, the grey system method, time series analysis method and artificial neural network method are three main methods. Based on the brief introduction, the three methods are analyzed comprehensively. Their merits and demerits, applied ranges are revealed. To solve the shortcomings of the artificial neural network method, a new prediction method based on new evolutionary neural network is proposed. Finally, through two real engineering applications, the analysis of three main methods and the new evolutionary neural network method all have been verified. The results show that, the grey system method is a kind of exponential approximation to displacement sequence, and time series analysis is linear autoregression approximation, while artificial neural network is nonlinear autoregression approximation. Thus, the grey system method can suitably analyze the sequence, which has the exponential law, the time series method can suitably analyze the random sequence and the neural network method almostly can be applied in any sequences. Moreover, the prediction results of new evolutionary neural network method is the best, and its approximation sequence and the generalization prediction sequence are all coincided with the real displacement sequence well. Thus, the new evolutionary neural network method is an acceptable method to predict the measurement displacements of geotechnical engineering.

Precise Tracking Control of Parallel Robot using Artificial Neural Network (인공신경망을 이용한 병렬로봇의 정밀한 추적제어)

  • Song, Nak-Yun;Cho, Whang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.200-209
    • /
    • 1999
  • This paper presents a precise tracking control scheme for the proposed parallel robot using artificial neural network. This control scheme is composed of three feedback controllers and one feedforward controller. Conventional PD controller and artificial neural network are used as feedback and feedforward controller respectively. A backpropagation learning strategy is applied to the training of artificial neural network, and PD controller outputs are used as target outputs. The PD controllers are designed at the robot dynamics based on inter-relationship between active joints and moving platform. Feedback controllers insure the total stability of system, and feedforward controller generates the control signal for trajectory tracking. The precise tracking performance of proposed control scheme is proved by computer simulation.

  • PDF