International Journal of Internet, Broadcasting and Communication
/
v.12
no.3
/
pp.149-155
/
2020
Air pollution is a problem of environmental health risk in big cities. Recently, researchers have proposed using various artificial intelligence technologies to predict air pollution. The proposed model is Cooperative of Artificial Neural Network (ANN) and Fuzzy Inference System (FIS), to predict air pollution of Korean cities using Python. Data air pollutant variables were collected and the Air Korean Web site air quality index was downloaded. This paper's aim was to predict on the health risks and the very unhealthy values of air pollution. We have predicted the air pollution of the environment based on the air quality index. According to the results of the experiment, our model was able to predict a very unhealthy value.
Journal of the Korean Society for Precision Engineering
/
v.22
no.4
/
pp.37-43
/
2005
Real time monitoring of exit burr formation is critical in manufacturing automation. In this paper, acoustic emission (AE) was used to detect the burr formation during drilling. By using wavelet transform (WT), AE data were compressed without unnecessary details. Then the transformed data were used as selected features (inputs) of a back-propagation artificial neural net (ANN). In order to validate the in process AE monitoring system, both WT-based ANN and cutting condition (cutting speed, feed, drill diameter, etc.) based ANN outputs were compared with experimental data.
This paper presents a neuro adaptive control method for nonlinear dynamical systems based on artificial neural network systems. The proposed neuro adaptive controller consists of 3 layers artificial neural network system and parallel PD controller. At the early stage in learning or identification process of the system characteristics the PD controller works mainly in order to compensate for the inadequacy of the learning process and then gradually the neuro contrller begins to work instead of the PD controller after the learning process has proceeded. From the simulation studies the neuro adaptive controller is seen to be robust and works effectively for nonlinear dynamical systems from a practical applicational points of view.
Magnetocardiogram (MCG) topography is a useful diagnostic technique that employs multi-channel magnetocardiograms. Measurement of artifact-free MCG signals is essenctial to obtain MCG topography or map for a diagnosis of human heart. Principal component analysis (PCA) combined with an artificial neural network (ANN) is proposed to remove a pulse-type artifact in the MCG signals. The algorithm is composed of a PCA module which decomposes the obtained signal into its principal components, followed by an ANN module for the classification of the components automatically. In the experiments with volunteer subjects, 97% of the decisions that were made by the ANN were identical to those by the human experts. Using the proposed technique, the MCG topography was successfully obtained without the artifact.
Journal of the Korean Society for Aviation and Aeronautics
/
v.22
no.1
/
pp.1-6
/
2014
In this paper, controller propose to prevent compressor surge and improve the transient response of the fuel flow control system of turbojet engine. Turbojet engine controller is designed by applying Artificial Neural Network PID control algorithm and make an inference by applying Levenberg-Marquartdt Error Back Propagation Algorithm. Artificial Neural Network inference results are used as the fuel flow control inputs to prevent compressor surge and flame-out for turbojet engine for UAV. High Gain Observer is used to estimate to compressor rotation speed of turbojet engine. Using MATLAB to perform computer simulations verified the performance of the proposed controller. Response characteristics pursuant to the gain were analyzed by simulation.
Real-time rainfall monitoring is of great practical importance over the highly populated Indochina area, which is prone to natural disasters, in particular in association with rainfall. With the goal of d etermining near real-time half-hourlyrain estimates from satellite, the three-layer, artificial neural networks (ANN) approach was used to train the brightness temperatures at 6.7, 11, and $12-{\mu}m$ channels of the Japanese geostationary satellite MTSAT against passive microwavebased rain rates from Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and TRMM Precipitation Radar (PR) data for the June-September 2005 period. The developed model was applied to the MTSAT data for the June-September 2006 period. The results demonstrate that the developed algorithm is comparable to the PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) results and can be used for flood monitoring across the Indochina area on a half-hourly time scale.
Journal of the Korean Society for Precision Engineering
/
v.17
no.6
/
pp.176-184
/
2000
Reverse engineering (RE) is a process to create computer aided design (CAD) models from the scanned data of an existing part acquired using 3D position scanners. This paper proposes a novel methodology of extracting geometric features directly from a set of 3D scanned points, which utilizes the concepts of feature-based technology and artificial neural networks (ANNs). The use of ANN has enabled the development of a flexible feature-based RE application that can be trained to deal with various features. The following four main tasks were mainly investigated and implemented: (1) Data reduction; (2) edge detection; (3) ANN-based feature recognition; (4) feature extraction. This approach was validated with a variety of real industrial components. The test results show that the developed feature-based RE application proved to be suitable for reconstructing prismatic features such as block, pocket, step, slot, hole, and boss, which are very common and crucial in mechanical engineering products.
Song Min Seob;Park Jong Ho;Kim Kab Soo;Jang Jong Ho;Lim Jae Hong;Kim Moo Han
Proceedings of the Korea Concrete Institute Conference
/
2004.05a
/
pp.446-449
/
2004
Traditional prediction models have been developed with a fixed equation from based on the limited number of data and parameters. If new data is quite different from original data, then the model should update not only its coefficients but also its equation form. However, artificial neural network dose not need a specific equation form. Instead of that, it needs enough input-output data. Also, it can continuously re-train the new data, so that it can conveniently adapt to new data. Therefore, the purpose of this study is to verify faith and application of prediction system of concrete strength using artificial neural networks through mock-up test.
The performance of transmission lines and its shielding design during a lightning phenomenon are quite essential in the maintenance of a reliable power supply to consumers. The leader progression model, as an advanced approach, has been recently developed to calculate the shielding failure rate (SFR) of transmission lines using geometrical data and physical behavior of upward and downward lightning leaders. However, such method is quite time consuming. In the present paper, an effective method that utilizes artificial neural networks (ANNs) to create a metamodel for calculating the SFR of a transmission line based on shielding angle and height is introduced. The results of investigations on a real case study reveal that, through proper selection of an ANN structure and good training, the ANN prediction is very close to the result of the detailed simulation, whereas the Processing time is by far lower than that of the detailed model.
This study systematized synthetically to use internet GIS and real estate appraisal method in computing system for the real estate decision. First, indicated the method of using GIS and databases to appraise the real estate by using the cost approach. Second, used the artificial neural network to predict the change of land prices and the artificial neural network convinced us that it indicates easily the result of land prices without complicated processes. Third, examined land prices using the artificial neural network but there is limits for the land price prediction because of difficult data gathering. also, this study may heighten information levels of the real estate field according to 21th century information level if use actively a internet, information users who should pay much moneys in existent real estate decisions may can approach easily.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.