• Title/Summary/Keyword: artificial neural

Search Result 3,657, Processing Time 0.049 seconds

Stock prediction analysis through artificial intelligence using big data (빅데이터를 활용한 인공지능 주식 예측 분석)

  • Choi, Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.10
    • /
    • pp.1435-1440
    • /
    • 2021
  • With the advent of the low interest rate era, many investors are flocking to the stock market. In the past stock market, people invested in stocks labor-intensively through company analysis and their own investment techniques. However, in recent years, stock investment using artificial intelligence and data has been widely used. The success rate of stock prediction through artificial intelligence is currently not high, so various artificial intelligence models are trying to increase the stock prediction rate. In this study, we will look at various artificial intelligence models and examine the pros and cons and prediction rates between each model. This study investigated as stock prediction programs using artificial intelligence artificial neural network (ANN), deep learning or hierarchical learning (DNN), k-nearest neighbor algorithm(k-NN), convolutional neural network (CNN), recurrent neural network (RNN), and LSTMs.

Rotor Resistance Estimation of Induction Motor by Artificial Neural-Network (인공신경회로망에 의한 유도전동기의 회전자 저항 추정)

  • Kim, Kil-Bong;Choi, Jung-Sik;Ko, Jae-Sub;Chugn, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.50-52
    • /
    • 2006
  • This paper Proposes a new method of on-line estimation for rotor resistance of the induction motor in the indirect vector controlled drive, using artificial neural network (ANN). The back propagation algorithm is used for training of the neural networks. The error between the desired state variable of an induction motor and actual state variable of a neural network model is back propagated to adjust the weight of a neural network model, so that the actual state variable tracks the desired value. The performance of rotor resistance estimator and torque and flux responses of drive, together with these estimators, are investigated variations rotor resistance from their nominal values. The rotor resistance are estimated analytically, using the proposed ANN in a vector controlled induction motor drive.

  • PDF

The Prediction of Geometrical Configuration and Ductile Fracture Using the Artificial Neural network for a Cold Forged Product (신경망을 이용한 냉간 단조품의 기하학적 형상 및 연성파괴 예측)

  • Kim, D.J.;Ko, D.C.;Park, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.10
    • /
    • pp.105-111
    • /
    • 1996
  • This paper suggests the scheme to simultaneously accomplish prediction of fracture initiation and geomeytical configuration of deformation in metal forming processes using the artificial neural network. A three-layer neural network is used and a back propagation algorithm is adapted to train the network. The Cookcroft-Lathjam criterion is used to estimate whether fracture occurs during the deformation process. The geometrical configuration and the value of ductile fracture are measured by finite element method. The predictions of neural network and numerical results of simple upsetting are compared. The proposed scheme has successfully predicted the geometrical configuration and fracture initiation.

  • PDF

Multi-temporal Remote-Sensing Imag e ClassificationUsing Artificial Neural Networks (인공신경망 이론을 이용한 위성영상의 카테고리분류)

  • Kang, Moon-Seong;Park, Seung-Woo;Lim, Jae-Chon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.59-64
    • /
    • 2001
  • The objectives of the thesis are to propose a pattern classification method for remote sensing data using artificial neural network. First, we apply the error back propagation algorithm to classify the remote sensing data. In this case, the classification performance depends on a training data set. Using the training data set and the error back propagation algorithm, a layered neural network is trained such that the training pattern are classified with a specified accuracy. After training the neural network, some pixels are deleted from the original training data set if they are incorrectly classified and a new training data set is built up. Once training is complete, a testing data set is classified by using the trained neural network. The classification results of Landsat TM data show that this approach produces excellent results which are more realistic and noiseless compared with a conventional Bayesian method.

  • PDF

NEURAL CHANDRASEKHAR FILTERING METHOD FOR STETIONARY SIGNAL PROCESSES

  • Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.742-745
    • /
    • 1994
  • In this paper we show the performance of neural Chandrasekhar filtering which is a special case for the new method of neural filtering using the artificial neural network systems developed recently for the filtering problems of linear and nonlinear, stationary and nonstationary stochastic signals. The neurofilter developed has either the finite impulse response(FIR) structure or the infinite impulse response(IIR) structure. The neurofilter differs from the conventional linear digital FIR and IIR filters because the artificial neural network system used in the neurofilter has nonlinear structure due to the sigmoid function. Numerical studies for the estimation of a second order Butterworth process are performed by changing the structures of the neurofilter in order to evaluate the performance indices under the changes of the output noises or disturbances. In the numerical studies both Chandrasekhar filtering estimates and true signals are used as the training signals for the neurofilter. The results obtained from the studies verified the capabilities which are essentially necessary for on-line filtering of various stochastic signals.

  • PDF

Identification of coherent generators for dynamic equivalents using artificial neural network (신경망을 이용한 코히런트발전기의 선정)

  • Rim, Seong-Jeong;Han, Seong-Ho;Yoon, Yong-Han;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.3-5
    • /
    • 1993
  • This paper presents a identification techniques of coherent generators for dynamic equivalents using artificial neural networks. In the developed neural network, inputs are the power system parameters which have a property of coherency. Outputs of the neural network are coherency and error indices which are derived from density measure concept. The learning of developed neural network is carried out by means of error back-propagation algorithm. Identification of coherent generators are implemented by proposed grouping algorithm using coherency and error indices. The proposed method is confirmed by simulations for 39-bus New England system.

  • PDF

A Study and Implementation on Automatic Design of Artificial Neural Networks using Cellular Automa Techniques

  • Sim, Kwee-Bo;Lee, Dong-Wook;Ban, Chang-Bong;Kwak, Sang-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.115.2-115
    • /
    • 2001
  • This paper is the result of constructing information processing system such as living creatures´ brain based on artificial life techniques. The living things are best information processing system in themselves. One individual is developed from a generative cell. And a species of this individual has adapted itself to the environment through evolution. We present a new type of neural architecture consistiong of chaotic neurons and implementation. To evolve chaotic neural systems, we use cellular automata. In order to obtain the best neural networks in the environment, we evolve the arrangement of initial cells. The cell, that is neuron of neural networks, is modeled on chaotic ...

  • PDF

Design of Initial Billet using the Artificial Neural Network for a Hot Forged Product (신경망을 이용한 열간단조품의 초기 소재 설계)

  • Kim, D.J.;Kim, B.M.;Park, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.11
    • /
    • pp.118-124
    • /
    • 1995
  • In the paper, we have proposed a new technique to determine the initial billet for the forged products using a function approximation in neural network. A three-layer neural network is used and a back propagation algorithm is employed to train the network. An optimal billet which satisfied the forming limitation, minimum of incomplete filling in the die cavity, load and energy as well as more uniform distribution of effective strain, is determined by applying the ability of function approximation of the neural network. The amount of incomplete filling in the die, load and forming energy as well as effective strain are measured by the rigid-plastic finite element method. This new technique is applied to find the optimal billet size for the axisymmetric rib-web product in hot forging. This would reduce the number of finite element simulation for determining the optimal billet of forging products, further it is usefully adopted to physical modeling for the forging design

  • PDF

A study on the computer aided testing and adjustment system utilizing artificial neural network

  • Koo, Young-Mo;Woo, Kwang-Bang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.65-69
    • /
    • 1992
  • In this paper, an implementation of neuro-controller with an application of artificial neural network for an adjustment and tuning process for the completed electronics devices is presented. Multi-layer neural network model is employed with the learning method of error back-propagation. For the intelligent control of adjustment and tuning process, the neural network emulator (NNE) and the neural network controller(NNC) are developed. Computer simulation reveals that the intelligent controllers designed can function very effectively as tools for computer aided adjustment system. The applications of the controllers to the real systems are also demonstrated.

  • PDF

Development of articulatory estimation model using deep neural network (심층신경망을 이용한 조음 예측 모형 개발)

  • You, Heejo;Yang, Hyungwon;Kang, Jaekoo;Cho, Youngsun;Hwang, Sung Hah;Hong, Yeonjung;Cho, Yejin;Kim, Seohyun;Nam, Hosung
    • Phonetics and Speech Sciences
    • /
    • v.8 no.3
    • /
    • pp.31-38
    • /
    • 2016
  • Speech inversion (acoustic-to-articulatory mapping) is not a trivial problem, despite the importance, due to the highly non-linear and non-unique nature. This study aimed to investigate the performance of Deep Neural Network (DNN) compared to that of traditional Artificial Neural Network (ANN) to address the problem. The Wisconsin X-ray Microbeam Database was employed and the acoustic signal and articulatory pellet information were the input and output in the models. Results showed that the performance of ANN deteriorated as the number of hidden layers increased. In contrast, DNN showed lower and more stable RMS even up to 10 deep hidden layers, suggesting that DNN is capable of learning acoustic-articulatory inversion mapping more efficiently than ANN.