• Title/Summary/Keyword: artificial neural

Search Result 3,657, Processing Time 0.034 seconds

Artificial Intelligent Systems Based on Neural Networks (신경망을 기초로한 인공지능시스템 구현방법)

  • Lee, Gye-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.46-48
    • /
    • 1992
  • Through the last 20 years' study, it is a well-known fact that symbolic approach has limitations in generating a new concept from given concepts. Hence, neural networks having a role of associative memory based on dynamical activation of neurons attract AI scientists' attention. In this paper, recent trials for combining neural networks and Artificial Intelligent systems are systematically reviewed and a prototype ENEDB(Experimental Neuro Expert DataBase) system built on HP9000/300 workstation is introduced to show the possibility of using the trials for real applications.

  • PDF

Transformer Differential Relay by Using Neural-Fuzzy System

  • Kim, Byung Whan;Masatoshi, Nakamura
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.157.2-157
    • /
    • 2001
  • This paper describes the synergism of Artificial Neural Network and Fuzzy Logic based approach to improve the reliability of transformer differential protection, the conventional transformer differential protection commonly used a harmonic restraint principle to prevent a tripping from inrush current during initial transformer´s energization but such a principle can not performs the best optimization on tripping time. Furthermore, in some cases there may be false operation such as during CT saturation, high DC offset or harmonic containing in the line. Therefore an artificial neural network and fuzzy logic has been proposed to improve reliability of the transformer protection relay. By using EMTP-ATP the power transformer is modeled, all currents flowing ...

  • PDF

Automatic Identification of Digital Modulation Methode Using an Artification Neural Network (신경망을 이용한 디지털 변조방식의 자동식별)

  • 신용조
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.10B
    • /
    • pp.1769-1776
    • /
    • 2000
  • In this paper a new method is proposed to identify a modulation method in the case of unknown digitally modulated input signals. The proposed identification method is implemented with an artificial neural network which is based on characteristic feature extracted from the instantaneous amplitude the instantaneous phase and the instantaneous frequency of the input signals. The proposed method was simulated with 9 type signals (ASK2, FSK2, FSK4, PSK2, PSK4, PSK8, QAM8, QAM16) in a noisy communication environment. The results show that the artificial neural network can accurately recognize all kinds of patterns.

  • PDF

Comparison of EKF and UKF on Training the Artificial Neural Network

  • Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.2
    • /
    • pp.499-506
    • /
    • 2004
  • The Unscented Kalman Filter is known to outperform the Extended Kalman Filter for the nonlinear state estimation with a significance advantage that it does not require the computation of Jacobian but EKF has a competitive advantage to the UKF on the performance time. We compare both algorithms on training the artificial neural network. The validation data set is used to estimate parameters which are supposed to result in better fitting for the test data set. Experimental results are presented which indicate the performance of both algorithms.

  • PDF

A Comparative Analysis of Artificial Intelligence System and Ohlson model for IPO firm's Stock Price Evaluation (신규상장기업의 주가예측에 대한 연구)

  • Kim, Kwang-Yong;Lee, Gyeong-Rak;Lee, Seong-Weon
    • Journal of Digital Convergence
    • /
    • v.11 no.5
    • /
    • pp.145-158
    • /
    • 2013
  • I estimate stock prices of listed companies using financial information and Ohlson model, which is used for the evaluation of company value. Furthermore, I use the artificial neural network, one of artificial intelligence systems, which are not based on linear relationship between variables, to estimate stock prices of listed companies. By reapplying this in estimating stock prices of newly listed companies, I evaluate the appropriateness in stock valuation with such methods. The result of practical analysis of this study is as follows. On the top of that, the multiplier for the actual stock price is accounted by generating the estimated stock prices based on the artificial neural network model. As a result of the comparison of two multipliers, the estimated stock prices by the artificial neural network model does not show statistically difference with the actual stock prices. Given that, the estimated stock price with artificial neural network is close to the actual stock prices rather than the estimated stock prices with Ohlson model.

A Comparative Analysis of the Forecasting Performance of Coal and Iron Ore in Gwangyang Port Using Stepwise Regression and Artificial Neural Network Model (단계적 회귀분석과 인공신경망 모형을 이용한 광양항 석탄·철광석 물동량 예측력 비교 분석)

  • Cho, Sang-Ho;Nam, Hyung-Sik;Ryu, Ki-Jin;Ryoo, Dong-Keun
    • Journal of Navigation and Port Research
    • /
    • v.44 no.3
    • /
    • pp.187-194
    • /
    • 2020
  • It is very important to forecast freight volume accurately to establish major port policies and future operation plans. Thus, related studies are being conducted because of this importance. In this paper, stepwise regression analysis and artificial neural network model were analyzed to compare the predictive power of each model on Gwangyang Port, the largest domestic port for coal and iron ore transportation. Data of a total of 121 months J anuary 2009-J anuary 2019 were used. Factors affecting coal and iron ore trade volume were selected and classified into supply-related factors and market/economy-related factors. In the stepwise regression analysis, the tonnage of ships entering the port, coal price, and dollar exchange rate were selected as the final variables in case of the Gwangyang Port coal volume forecasting model. In the iron ore volume forecasting model, the tonnage of ships entering the port and the price of iron ore were selected as the final variables. In the analysis using the artificial neural network model, trial-and-error method that various Hyper-parameters affecting the performance of the model were selected to identify the most optimal model used. The analysis results showed that the artificial neural network model had better predictive performance than the stepwise regression analysis. The model which showed the most excellent performance was the Gwangyang Port Coal Volume Forecasting Artificial Neural Network Model. In comparing forecasted values by various predictive models and actually measured values, the artificial neural network model showed closer values to the actual highest point and the lowest point than the stepwise regression analysis.

Classification of Tire Tread Wear Using Accelerometer Signals through an Artificial Neural Network (인공신경망을 이용한 가속도 센서 기반 타이어 트레드 마모도 판별 알고리즘)

  • Kim, Young-Jin;Kim, Hyeong-Jun;Han, Jun-Young;Lee, Suk
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.163-171
    • /
    • 2020
  • The condition of tire tread is a key parameter closely related to the driving safety of a vehicle, which affects the contact force of the tire for braking, accelerating and cornering. The major factor influencing the contact force is tread wear, and the more tire tread wears out, the higher risk of losing control of a vehicle exits. The tire tread condition is generally checked by visual inspection that can be easily forgotten. In this paper, we propose the intelligent tire (iTire) system that consists of an acceleration sensor, a wireless signal transmission unit and a tread classifier. In addition, we also presents classification algorithm that transforms the acceleration signal into the frequency domain and extracts the features of several frequency bands as inputs to an artificial neural network. The artificial neural network for classifying tire wear was designed with an Multiple Layer Perceptron (MLP) model. Experiments showed that tread wear classification accuracy was over 80%.

CROSS-VALIDATION OF ARTIFICIAL NEURAL NETWORK FOR LANDSLIDE SUSCEPTIBILITY ANALYSIS: A CASE STUDY OF KOREA

  • LEE SARO;LEE MOUNG-JIN;WON JOONG-SUN
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.298-301
    • /
    • 2004
  • The aim of this study is to cross-validate of spatial probability model, artificial neural network at Boun, Korea, using a Geographic Information System (GIS). Landslide locations were identified in the Boun, Janghung and Youngin areas from interpretation of aerial photographs, field surveys, and maps of the topography, soil type, forest cover and land use were constructed to spatial data-sets. The factors that influence landslide occurrence, such as slope, aspect and curvature of topography, were calculated from the topographic database. Topographic type, texture, material, drainage and effective soil thickness were extracted from the soil database, and type, diameter, age and density of forest were extracted from the forest database. Lithology was extracted from the geological database, and land use was classified from the Landsat TM image satellite image. Landslide susceptibility was analyzed using the landslide­occurrence factors by artificial neural network model. For the validation and cross-validation, the result of the analysis was applied to each study areas. The validation and cross-validate results showed satisfactory agreement between the susceptibility map and the existing data on landslide locations.

  • PDF

MINERAL POTENTIAL MAPPING AND VERIFICATION OF LIMESTONE DEPOSITS USING GIS AND ARTIFICIAL NEURAL NETWORK IN THE GANGREUNG AREA, KOREA

  • Oh, Hyun-Joo;Lee, Sa-Ro
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.710-712
    • /
    • 2006
  • The aim of this study was to analyze limestone deposits potential using an artificial neural network and a Geographic Information System (GIS) environment to identify areas that have not been subjected to the same degree of exploration. For this, a variety of spatial geological data were compiled, evaluated and integrated to produce a map of potential deposits in the Gangreung area, Korea. A spatial database considering deposit, topographic, geologic, geophysical and geochemical data was constructed for the study area using a GIS. The factors relating to 44 limestone deposits were the geological data, geochemical data and geophysical data. These factors were used with an artificial neural network to analyze mineral potential. Each factor’s weight was determined by the back-propagation training method. Training area was applied to analyze and verify the effect of training. Then the mineral deposit potential indices were calculated using the trained back-propagation weights, and potential map was constructed from GIS data. The mineral potential map was then verified by comparison with the known mineral deposit areas. The verification result gave accuracy of 87.31% for training area.

  • PDF

Application of Artificial Neural Networks(ANN) to Ultrasonically Enhanced Soil Flushing of Contaminated Soils (초음파-토양수세법을 이용한 오염지반 복원률증대에 인공신경망의 적용)

  • 황명기;김지형;김영욱
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.343-350
    • /
    • 2003
  • The range of applications of artificial neural networks(Am) in many branches of geotechnical engineering is growing rapidly. This study was undertaken to develop an analysis model representing ultrasonically enhanced soil flushing by the use of ANN. Input data for the model-development were obtained by laboratory study, and used for training and verification. Analyses involved various ranges of momentum, loaming rate, activation function, hidden layer, and nodes. Results of the analyses were used to obtain the optimum conditions for establishing and verifying the model. The coefficient of correlation between the measured and the predicted data using the developed model was relatively high. It shows potential application of ANN to ultrasonically enhanced soil flushing which is not easy to build up a mathematical model.