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Abstract

The Unscented Kalman Filter is known to outperform the Extended 
Kalman Filter for the nonlinear state estimation with a significance 
advantage that it does not require the computation of Jacobian but EKF 
has a competitive advantage to the UKF on the performance time. We 
compare both algorithms on training the artificial neural network. The 
validation data set is used to estimate parameters which are supposed to 
result in better fitting for the test data set. Experimental results are 
presented which indicate the performance of both algorithms. 
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1. Introduction

For the linear dynamic system with white input and observation noise, the 

Kalman Filter proposed by Kalman(1960) and refined by Kalman and Bucy(1961) 

is well known to be an optimal algorithm. The extended version of the Kalman 

Filter - the Extended Kalman Filter(EKF) can be applied to the nonlinear dynamic 

system by linearizing the system around the current estimates of the  

parameters(Gelb(1974), Anderson and Moore(1979)). Singhal and Wu(1989) 

compared EKF and the back-propagation proposed by Rumelhart et al. (1986) on 

training the artificial neural network using two dimensional examples. The 

Unscented Kalman Filter(UKF) proposed by Julier and Uhlman(1997, 2002) is 

shown to outperform EKF in the nonlinear state estimation. In the parameter 

estimation of the artificial neural network, UKF is slightly better than the EKF 

with a significance advantage that it does not require the computation of neural 
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network Jacobian. Although EKF is computationally complicative rather than UKF, 

it updates parameters consistently with all previous data and usually converges in 

a few iterations. 

On training the artificial neural network with EKF and UKF we use the 

validation data to find iteration number which can achieve the minimum error for 

the validation data. In the following sections, we introduce EKF and UKF, how 

they can be applied to the artificial neural network  and compare their 

performances using the French Curve data and XOR data.

2.  The Extended Kalman Filter

Let us consider the simple discrete time nonlinear dynamic system where the 

unobserved signal  hidden state w k  is modelled as a Markov process of initial 

distribution p (w 0 )  and transition equation,

w k = w k − 1 + vk (1,a)

while the observations ,

yk = h (w k ) + uk . (1,b)

are assumed conditionally independent given the state w k , where  

E (uk ) = E (vk ) =  0  ,Var (uk ) = Uk  and  Var (vk ) = Vk  , Uk  and Vk  are 

assumed to be known. The process noise vk  drives the dynamic system, while the 

observation noise is given by uk  and they are independent of w k − 1 , yk , 

respectively.

The Minimum Mean Squared Error (MMSE) estimate of the state w k  of a 

nonlinear discrete time system (1) satisfies conditions that the estimation error

ek = w k − ŵ k

is unbiased(E [ek ] = 0 )  and orthogonal to the observation yk  (E [ekyk ] = 0 ). EKF 

and UKF provide an MMSE estimate of the state w k  using predictor-corrector　 

scheme. Given the estimate of the state w k − 1  and its covariance Pk − 1 , obtained 

for the set of observations up to the time step k − 1 ,

 y k − 1 =  yi, i = 1, , k − 1 ,

the filter predicts the future state using the process model and the knowledge 

about the process noise distribution. Predicted mean and covariance are ideally as:
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      w̃ k =  E (w k  |y k − 1 ) = E (w k − 1 + vk|  y k − 1 ) = E (wk − 1|yk−1) =ŵ k − 1 

     Pk =  Cov (w k  |  y k − 1 ) = Cov (w k − 1 + vk |  y k − 1 )

            = Cov (wk − 1|yk−1) + Cov (vk|yk−1) = P̂ k − 1 + Vk − 1

    ỹ k =  E (yk  |  y k − 1 ) =  E ( h (w k ) + uk  |  y k − 1 ) =  E ( h (w k )  |  y k − 1 )

    qk  =  Cov (yk  |y k − 1 ) =  Cov (h (w k ) + uk |  y k − 1 ) = Cov (h (w k ) |  y k − 1 ) + Uk

    
Sk =  Cov (w k, yk  |  y k − 1 ) =  Cov (w k, h (w k ) + uk  |  y k − 1 )

 =  Cov (w k, h (w k )  |  y k − 1 )

The estimate ŵ k  = E [w k  |  y k ]  and its covariance P̂ k  = Cov [w k  |  y k ]  are 

obtained by updating (correcting) the state prediction (w̃ k, Pk , Sk ,  qk  )  with the 

current observation yk  as follows.

      ŵ k  =  E (w k | y k ) =  w̃ k + Skq
− 1
k (yk − ỹ k ) = w̃ k + Kk (yk − ỹ k )

      P̂ k =  Cov (w k | y k  ) =  Pk − Sk q
− 1
k Sk =   Pk − KkSk

(2)

where Kk =  Sk q
− 1
k  is the  Kalman gain matrix. EKF uses the first order Taylor 

approximation of h (w k )  with respect to w k = w̃ k . Then ŵ k = E [w k  |  y k ]  and P̂ k  

= Cov [w k  |  y k ]  can be estimated by using following results.

ỹ k =  E (yk  |  y k − 1 ) =  h (w̃ k )

qk  =  Cov (yk  |y k − 1 ) =  Ak Pk  Ak  + Uk

Sk =  Cov (w k, yk  |  y k − 1 ) =  Pk  Ak

(3)

where Ak  is  Jacobian of h  with respect to w k = w̃ k .

3. The Unscented Kalman Filter

Julier and Uhlman(1997) proposed the Unscented Transformation (UT) in order 

to calculate the statistics of a random variable w  propagated through nonlinear 
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function y = h (w) . The n  dimensional continuous random variable w k  with 

w̃ k =  E (w k  |y k − 1 )  and qk  and Sk  are approximated by 2n + 1  sigma points 

Wp  with corresponding weights wtp , p = 0, 1, , 2n .

     W0 = w̃, wt0 = λ/ (n + λ ), λ = α2 (n + φ ) − n  for p = 1, 2, , n ,

     Wp = w̃+ sp  
√

n + λ,   wtp = 0.5/ (n + λ ) wt0 = λ/ (n + λ ),

     Wp + n = w̃− sp  
√

n+ λ,   wtp + n = 0.5/ (n+ λ ) ,

where α determines the spread of the sigma points around w̃　 (usually 

1.e − 4 α 1  ) and φ R  is the scaling parameter, usually set to 0 or

3 − n , sp  is the p th row or column of the matrix square root of Pw . Each 

sigma point is instantiated through the function h ( )  to yield the set of 

transformed sigma points h (W0 )  and the mean ỹ k  of a transformed distribution 

is estimated by

ỹ k =  E (yk  |  y k − 1 ) = Σ
p = 0

2n

wtph (Wp )

=
λ

n + λ
h (w̃ k ) +  

1
2 (n + λ ) Σi = 1

n

h (w̃ k + sp  
√

(n + λ ) + h (w̃ k − sp  
√

n + λ ).

The covariance estimates obtained by unscented transform are

qk =  Cov (yk  |y k − 1 )  = Σ
p = 0

2n

wtp (h (Wp ) − ỹ k )(h (Wp ) − ỹ k )
T

=
λ

n + λ
(h (w̃ k ) − ỹ k )(h (w̃) − ỹ k )

T

+
1

2 (n + λ ) Σp = 1

n

(h (w̃ k + sp  
√

n + λ ) − ỹ k )(h (w̃ k + sp  
√

n + λ− ỹ k )
T

+
1

2 (n + λ ) Σp = 1

n

(h (w̃ k − sp  
√

n + λ ) − ỹ k )(h (w̃− sp  
√

n + λ− ỹ k )
T

(4)

and
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Sk =  Cov (w k , yk  |y k − 1 ) = Σ
p = 0

2n

wtp (Wp − w̃ k )(h (Wp ) − ỹ )T

=
λ

n + λ
(Wp − w̃ k )(h (w̃ k ) − ỹ k )

T

+
1

2 (n + λ ) Σp = 1

n

(Wp − w̃ k )(h (w̃ k + sp  
√

n + λ− ỹ k )
T

+
1

2 (n + λ ) Σp = 1

n

(Wp − w̃ k )(h (w̃ k − sp  
√

n + λ− ỹ k )
T.

(5)

Then (ŵ k, P̂ k  )  are updated with the current observation yk  by substituting (4) 

and (5) in the update step (2).

<Figure 1> Predicted line for the test data by EKF and UKF

4. Numerical studies 

We illustrate the performance of EKF and UKF on training the artificial neural 

network through two data sets -  French curve data set and XOR data set. The 

logarithmic sigmoid transfer function is used for  the artificial neural network for 

both data sets.

The French curve data set consists of 230 of input data x  generated from 

xi = 3* (2* i − 1 )/200  for i = 1, , 230  and 230 of output data y generated 

from a normal distribution
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N (4.26* (exp (− xi  ) − 4*  exp (− 2* xi  ) + 3*  exp (− 3* xi  )), 0.04 )

for i = 1, , 230 . The first 100 of data are used for the training data set to 

estimate w , 30 of data are used for the validation to find the proper iteration 

number and the rest of data are used for test data set to  predict the true curve. 

For the French curve data 2 layers with 5 nodes are used then the parameters to 

be estimated in the network is given as w  such that

l1 = x w (1 ) + w (2 )  ,  l2 = x w (3 ) + w (4 )  ,  l3 = x w (5 ) + w (6 )

l4 = x w (7 ) + w (8 )  ,  l5 = x w (9 ) + w (10 ),

h (w) = w (11 )/ (1 + exp (− l1 )) + w (12 )/ (1 + exp (− l2 ))

 + w (13 )/ (1 + exp (− l3 )) + w (14 )/ (1 + exp (− l4 ))

  + w (15 )/ (1 + exp (− l5 )) + w (16 )

We trained the artificial neural network with EKF and UKF by initializing 

P̂ 0 = I16  and setting Vk = 0.01 I16  and Uk = 0.01 , respectively, and the 

control parameter α  of UKF 0.433. For test data we obtained MSE as 0.6128 and 

0.0416, respectively. Figure 1 shows the true curve and predicted curve by EKF 

and UKF. For the reference we train the artificial neural network with the 

back-propagation algorithm 500 times with each iteration number 1000. The 

minimum of MSE for test data is 0.0379, the maximum of MSE is 0.0503 and the 

average of  MSE is 0.0408.

1200 XOR data are generated as follows

x1i  ∼   U (− 1,+ 1 )  ,   x2i  ∼   U (− 1,+ 1 )

yi  =   − 1   if x1i x2i  <   0  , yi  =   + 1   if x1i x2i    0  . 

The first 500 of data are used for the training data set to estimate w , 200 of 

data are used for the validation to find the proper iteration number and the rest of 

data are used for test data set to  predict the true curve. For XOR data 2 layers 

with 4 nodes are used then the parameters to be estimated in the network is 

given as w  such that
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l1 = x1 w (1 ) + w (2 ) x2 + w (3 ), l2 = x1 w (4 ) + w (5 ) x2 + w (6 ),

l3 = x1 w (7 ) + w (8 ) x2 + w (9 ), l4 = x1 w (10 ) + w (11 ) x2 + w (12 )

h (w) = w (13 )/ (1 + exp (− l1 )) + w (14 )/ (1 + exp (− l2 ))

+ w (15 )/ (1 + exp (− l3 )) + w (16 )/ (1 + exp (− l4 )) + w (17 )

We trained the artificial neural network with EKF and UKF by initializing 

P̂ 0 = I17  and setting Vk = 0.001 I17  and Uk = 0.001 , respectively, and the 

control parameter α of UKF 0.420. For test data we obtained misclassifcation rate 

for the test data 0.13 and 0.08, respectively. Figure 2 shows the predicted values 

by EKF and UKF.

For the reference we train the artificial neural network with the 

back-propagation algorithm 500 times with each iteration number 1000. The 

minimum of misclassification rate for test data  is 0.032, the maximum of 

misclassification rate is 0.450 and the average of  misclassification rate is 0.1126. 

<Figure 2> The predicted value by EKF and UKF (*:y=-1, o: y=+1)

5. Remarks and Conclusions

Through the examples we showed that UKF derives more satisfying results 

than EKF on training the artificial neural network, but for performance time EKF 

is more satisfying. And for some cases UKF can provide better results than the 

back-propagation on training the artificial neural network.
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