• Title/Summary/Keyword: artificial neural

Search Result 3,657, Processing Time 0.032 seconds

Classification of Pathological Voice Using Artigicial Neural Network with Normalized Parameters

  • Li, Tao;Bak, Il-Suh;Jo, Cheol-Woo
    • Speech Sciences
    • /
    • v.11 no.1
    • /
    • pp.21-29
    • /
    • 2004
  • In this paper we examined the effect of normalization on discriminating the pathological voice into normal and abnormal classes using artificial neural network. Average values per each parameter were used to normalize each set of parameter values. Artificial neural networks were used as classifiers. And the effect of normalization was evaluated by comparing the discrimination results between original and normalized parameter sets.

  • PDF

WEIGHTED PSEUDO ALMOST PERIODIC SOLUTIONS OF HOPFIELD ARTIFICIAL NEURAL NETWORKS WITH LEAKAGE DELAY TERMS

  • Lee, Hyun Mork
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.221-234
    • /
    • 2021
  • We introduce high-order Hopfield neural networks with Leakage delays. Furthermore, we study the uniqueness and existence of Hopfield artificial neural networks having the weighted pseudo almost periodic forcing terms on finite delay. Our analysis is based on the differential inequality techniques and the Banach contraction mapping principle.

Performance Comparison of Guitar Chords Classification Systems Based on Artificial Neural Network (인공신경망 기반의 기타 코드 분류 시스템 성능 비교)

  • Park, Sun Bae;Yoo, Do-Sik
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.3
    • /
    • pp.391-399
    • /
    • 2018
  • In this paper, we construct and compare various guitar chord classification systems using perceptron neural network and convolutional neural network without pre-processing other than Fourier transform to identify the optimal chord classification system. Conventional guitar chord classification schemes use, for better feature extraction, computationally demanding pre-processing techniques such as stochastic analysis employing a hidden markov model or an acoustic data filtering and hence are burdensome for real-time chord classifications. For this reason, we construct various perceptron neural networks and convolutional neural networks that use only Fourier tranform for data pre-processing and compare them with dataset obtained by playing an electric guitar. According to our comparison, convolutional neural networks provide optimal performance considering both chord classification acurracy and fast processing time. In particular, convolutional neural networks exhibit robust performance even when only small fraction of low frequency components of the data are used.

Deep Structured Learning: Architectures and Applications

  • Lee, Soowook
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.262-265
    • /
    • 2018
  • Deep learning, a sub-field of machine learning changing the prospects of artificial intelligence (AI) because of its recent advancements and application in various field. Deep learning deals with algorithms inspired by the structure and function of the brain called artificial neural networks. This works reviews basic architecture and recent advancement of deep structured learning. It also describes contemporary applications of deep structured learning and its advantages over the treditional learning in artificial interlligence. This study is useful for the general readers and students who are in the early stage of deep learning studies.

Artificial neural network calculations for a receding contact problem

  • Yaylaci, Ecren Uzun;Yaylaci, Murat;Olmez, Hasan;Birinci, Ahmet
    • Computers and Concrete
    • /
    • v.25 no.6
    • /
    • pp.551-563
    • /
    • 2020
  • This paper investigates the artificial neural network (ANN) to predict the dimensionless parameters for the maximum contact pressures and contact areas of a contact problem. Firstly, the problem is formulated and solved theoretically by using Theory of Elasticity and Integral Transform Technique. Secondly, the contact problem has been extended based on the ANN. The multilayer perceptron (MLP) with three-layer was used to calculate the contact distances. External load, distance between the two quarter planes, layer heights and material properties were created by giving examples of different values were used at the training and test stages of ANN. Program code was rewritten in C++. Different types of network structures were used in the training process. The accuracy of the trained neural networks for the case was tested using 173 new data which were generated via theoretical solutions so as to determine the best network model. As a result, minimum deviation value (difference between theoretical and C++ ANN results) of was obtained for the network model. Theoretical results were compared with artificial neural network results and well agreements between them were achieved.

Prediction of Turbidity in Treated Water and the Estimation of the Optimum Feed Concentration of Coagulants in Rapid Mixing Process using an Artificial Neural Network Model (인공신경망 모형을 이용한 급속혼화공정에서 적정 응집제 주입농도 결정 및 응집처리후 탁도의 예측)

  • Jeong, Dong-Hwan;Park, Kyoohong
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.21-28
    • /
    • 2005
  • The training and prediction modeling using an artificial neural network was implemented to predict the turbidity of treated water as well as to estimate the optimized feed concentration of polyaluminium chloride (PACl) in a water treatment plant. The parameters used in the input layers were pH, temperature, turbidity and alkalinity, while those in output layers were PACl and turbidity of treated water. Levenberg-Marquadt method of feedforward back-propagation perceptron in the neural network toolbox of MATLAB program was used in this study. Correlation coefficients of the training data with the measured data were 0.9997 for PACl and 0.6850 for turbidity and those of the testing data with measured data were 0.9140 for PACl and 0.3828 for turbidity, when four parameters at input layer, 12-12 nodes each at both the first and the second hidden layers, and two parameters(PACl and turbidity) at output layer were used. Although the predictability of PACl was improved, compared to that of the previous studies to use the only coagulant dose as output layer, turbidity in treated water could not be predicted well. Acquisition of more data through several years obtained with the advanced on-line measuring system could make the artificial neural network useful and practical in actual water treatment plants.

A Study on Prediction of Attendance in Korean Baseball League Using Artificial Neural Network (인경신경망을 이용한 한국프로야구 관중 수요 예측에 관한 연구)

  • Park, Jinuk;Park, Sanghyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.12
    • /
    • pp.565-572
    • /
    • 2017
  • Traditional method for time series analysis, autoregressive integrated moving average (ARIMA) allows to mine significant patterns from the past observations using autocorrelation and to forecast future sequences. However, Korean baseball games do not have regular intervals to analyze relationship among the past attendance observations. To address this issue, we propose artificial neural network (ANN) based attendance prediction model using various measures including performance, team characteristics and social influences. We optimized ANNs using grid search to construct optimal model for regression problem. The evaluation shows that the optimal and ensemble model outperform the baseline model, linear regression model.

Real-time Artificial Neural Network for High-dimensional Medical Image (고차원 의료 영상을 위한 실시간 인공 신경망)

  • Choi, Kwontaeg
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.8
    • /
    • pp.637-643
    • /
    • 2016
  • Due to the popularity of artificial intelligent, medical image processing using artificial neural network is increasingly attracting the attention of academic and industry researches. Deep learning with a convolutional neural network has been proved to very effective representation of images. However, the training process requires high performance H/W platform. Thus, the realtime learning of a large number of high dimensional samples within low-power devices is a challenging problem. In this paper, we attempt to establish this possibility by presenting a realtime neural network method on Raspberry pi using online sequential extreme learning machine. Our experiments on high-dimensional dataset show that the proposed method records an almost real-time execution.

Artificial Neural Network Analysis for Prediction of Community Care Design Research in Spatial and Environmental Areas in Korea

  • Yumi, Jang;Jiyoung An;Jinkyung Paik
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.2
    • /
    • pp.249-255
    • /
    • 2023
  • This study aims to empirically confirm the effect and impact of community care design research centered on domestic space and environment on health promotion, diagnosis treatment, disease management, rehabilitation, and mitigation through the year of publication and perspective. To this end, based on 1,227 space and environment design studies from 2,144 community care design research data conducted for about 20 years from 2002 to 2022, when care services began in earnest through the long-term care system for the elderly, SPSS 26.0 was used to create a 'Multi-layer Perceptron' artificial neural network structure model was predicted and neural network analysis was performed. Research Results First, as a result of checking studies in each field of health care by year, there is a significant difference with the number of studies related to health promotion being the highest. Second, the five perspectives are region, time, dimension, function, and content perspective. As a result of inputting these variables as independent variables and analyzing their importance in the artificial neural network, the function perspective had the most influence, followed by the region > content > dimension > time perspective.

Artificial Neural Network based Motion Classification Algorithm using Surface Electromyogram (표면 근전도를 이용한 Artificial Neural Network 기반의 동작 분류 알고리즘)

  • Jeong, E.C.;Kim, S.J.;Song, Y.R.;Lee, S.M.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.6 no.1
    • /
    • pp.67-73
    • /
    • 2012
  • In this paper, Artificial Neural Network(ANN) based motion classification algorithm is proposed to classify wrist motions using surface electromyograms(sEMG). surface EMGs are obtained from two electrodes placed on the flexor carpi ulnaris muscle and extensor carpi ulnaris muscle of 26 subjects under no strain condition during wrist motions and used to recognize wrist motions such as up, down, left, right, and rest. Feature is extracted from obtained EMG signals in time domain for fast processing and used to classify wrist motions using ANN. DAMV, DASDV, MAV, and RMS were used as features and accuracies of motion classification based on ANN were 98.03% for DAMV, 97.97% for DASDV, 96.95% for MAV, 96.82% for RMS.

  • PDF