• Title/Summary/Keyword: artificial neural

Search Result 3,657, Processing Time 0.036 seconds

Landslide Susceptibility Analysis and its Verification using Likelihood Ratio, Logistic Regression and Artificial Neural Network Methods: Case study of Yongin, Korea

  • Lee, S.;Ryu, J. H.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.132-134
    • /
    • 2003
  • The likelihood ratio, logistic regression and artificial neural networks methods are applied and verified for analysis of landslide susceptibility in Yongin, Korea using GIS. From a spatial database containing such data as landslide location, topography, soil, forest, geology and land use, the 14 landsliderelated factors were calculated or extracted. Using these factors, landslide susceptibility indexes were calculated by likelihood ratio, logistic regression and artificial neural network methods. Before the calculation, the study area was divided into two sides (west and east) of equal area, for verification of the methods. Thus, the west side was used to assess the landslide susceptibility, and the east side was used to verify the derived susceptibility. The results of the landslide susceptibility analysis were verified using success and prediction rates. The v erification results showed satisfactory agreement between the susceptibility map and the exis ting data on landslide locations.

  • PDF

An Efficient and Accurate Artificial Neural Network through Induced Learning Retardation and Pruning Training Methods Sequence

  • Bandibas, Joel;Kohyama, Kazunori;Wakita, Koji
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.429-431
    • /
    • 2003
  • The induced learning retardation method involves the temporary inhibition of the artificial neural network’s active units from participating in the error reduction process during training. This stimulates the less active units to contribute significantly to reduce the network error. However, some less active units are not sensitive to stimulation making them almost useless. The network can then be pruned by removing the less active units to make it smaller and more efficient. This study focuses on making the network more efficient and accurate by developing the induced learning retardation and pruning sequence training method. The developed procedure results to faster learning and more accurate artificial neural network for satellite image classification.

  • PDF

Process Design of a Hot Forged Product Using the Artificial Neural Network and the Statistical Design of Experiments (신경망과 실험계획법을 이용한 열간 단조품의 공정설계)

  • 김동환;김동진;김호관;김병민;최재찬
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.15-24
    • /
    • 1998
  • In this research. we have proposed a new technique to determine .the combination of design parameters for the process design of a hot forged product using artificial neural network(ANN) and statistical design of experiments(DOE). The investigated problem involves the adequate selection of the aspect ratio of billet, the ram velocity and the friction factor as design parameters. An optimal billet satisfying the forming limitation, die filling, load and energy as well as more uniform distribution of effective strain, is determined by applying the ability of artificial neural network and considering the analysis of mean and variation on the functional requirement. This methodology will be helpful in designing and controlling parameters on the shop floor which would yield the best design solution.

  • PDF

Optimizing Artificial Neural Network-Based Models to Predict Rice Blast Epidemics in Korea

  • Lee, Kyung-Tae;Han, Juhyeong;Kim, Kwang-Hyung
    • The Plant Pathology Journal
    • /
    • v.38 no.4
    • /
    • pp.395-402
    • /
    • 2022
  • To predict rice blast, many machine learning methods have been proposed. As the quality and quantity of input data are essential for machine learning techniques, this study develops three artificial neural network (ANN)-based rice blast prediction models by combining two ANN models, the feed-forward neural network (FFNN) and long short-term memory, with diverse input datasets, and compares their performance. The Blast_Weathe long short-term memory r_FFNN model had the highest recall score (66.3%) for rice blast prediction. This model requires two types of input data: blast occurrence data for the last 3 years and weather data (daily maximum temperature, relative humidity, and precipitation) between January and July of the prediction year. This study showed that the performance of an ANN-based disease prediction model was improved by applying suitable machine learning techniques together with the optimization of hyperparameter tuning involving input data. Moreover, we highlight the importance of the systematic collection of long-term disease data.

Artificial Neural Network Modeling for Photovoltaic Module Under Arbitrary Environmental Conditions (랜덤 환경조건 기반의 태양광 모듈 인공신경망 모델링)

  • Baek, Jihye;Lee, Jonghwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.110-115
    • /
    • 2022
  • Accurate current-voltage modeling of solar cell systems plays an important role in power prediction. Solar cells have nonlinear characteristics that are sensitive to environmental conditions such as temperature and irradiance. In this paper, the output characteristics of photovoltaic module are accurately predicted by combining the artificial neural network and physical model. In order to estimate the performance of PV module under varying environments, the artificial neural network model is trained with randomly generated temperature and irradiance data. With the use of proposed model, the current-voltage and power-voltage characteristics under real environments can be predicted with high accuracy.

I-V Modeling Based on Artificial Neural Network in Anti-Reflective Coated Solar Cells (반사방지막 태양전지의 I-V특성에 대한 인공신경망 모델링)

  • Hong, DaIn;Lee, Jonghwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.130-134
    • /
    • 2022
  • An anti-reflective coating is used to improve the performance of the solar cell. The anti-reflective coating changes the value of the short-circuit current about the thickness. However, the current-voltage characteristics about the anti-reflective coating are difficult to calculate without simulation tool. In this paper, a modeling technique to determine the short-circuit current value and the current-voltage characteristics in accordance with the thickness is proposed. In addition, artificial neural network is used to predict the short-circuit current with the dependence of temperature and thickness. Simulation results incorporating the artificial neural network model are obtained using MATLAB/Simulink and show the current-voltage characteristic according to the thickness of the anti-reflective coating.

Improved Modeling of I-V Characteristic Based on Artificial Neural Network in Photovoltaic Systems (태양광 시스템의 인공신경망 기반 I-V 특성 모델링 향상)

  • Park, Jiwon;Lee, Jonghwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.135-139
    • /
    • 2022
  • The current-voltage modeling plays an important role in characterizing photovoltaic systems. A solar cell has a nonlinear characteristic with various parameters influenced by the external environments such as the irradiance and the temperature. In order to accurately predict current-voltage characteristics at low irradiance, the artificial neural networks are applied to effectively quantify nonlinear behaviors. In this paper, a multi-layer perceptron scheme that can make accurate predictions is employed to learn complex formulas for large amounts of continuous data. The simulated results of artificial neural networks model show the accuracy improvement by using MATLAB/Simulink.

An application of neural network analysis in diagnosis of mechanical failure of a total artificial heart

  • Park, Seong-Keun;Choi, Won-Woo;Min, Byoung-Goo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.500-504
    • /
    • 1995
  • A neural network based upon the back propagation algorithm was designed and applied to acoustic power spectra of electrohydraulic total artificial hearts in order to diagnose mechanical failure of devices. The trained network distinguished spectra of the mechanically damaged device from those of the undamaged device with overall success rate of 63%. Moreover, the network correctly classified more than 70% of spectra in the frequency bands of 0-100 Hz and 700-950 Hz. Consequently, the neural network analysis was useful for the diagnosis of mechanical failure of a total artificial heart.

  • PDF

A Comparative Analysis of Artificial Neural Network (ANN) Architectures for Box Compression Strength Estimation

  • By Juan Gu;Benjamin Frank;Euihark Lee
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.3
    • /
    • pp.163-174
    • /
    • 2023
  • Though box compression strength (BCS) is commonly used as a performance criterion for shipping containers, estimating BCS remains a challenge. In this study, artificial neural networks (ANN) are implemented as a new tool, with a focus on building up ANN architectures for BCS estimation. An Artificial Neural Network (ANN) model can be constructed by adjusting four modeling factors: hidden neuron numbers, epochs, number of modeling cycles, and number of data points. The four factors interact with each other to influence model accuracy and can be optimized by minimizing model's Mean Squared Error (MSE). Using both data from the literature and "synthetic" data based on the McKee equation, we find that model estimation accuracy remains limited due to the uncertainty in both the input parameters and the ANN process itself. The population size to build an ANN model has been identified based on different data sets. This study provides a methodology guide for future research exploring the applicability of ANN to address problems and answer questions in the corrugated industry.

Prediction of Undrained Shear Strength of Normally Consolidated Clay with Varying Consolidation Pressure Ratios Using Artificial Neural Networks (인공신경회로망을 이용한 압밀응력비에 따른 정규압밀점토의 비배수전단강도 예측)

  • 이윤규;윤여원;강병희
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.75-81
    • /
    • 2000
  • The anisotropy of soils has an important effect on stress-strain behavior. In this study, an attempt has been made to implement artificial neural network model for modeling the stress-strain relationship and predicting the undrained shear strength of normally consolidated clay with varying consolidation pressure ratios. The multi-layer neural network model, adopted in this study, utilizes the error back-propagation loaming algorithm. The artificial neural networks use the results of undrained triaxial test with various consolidation pressure ratios and different effective vertical consolidation pressure fur learning and testing data. After learning from a set of actual laboratory testing data, the neural network model predictions of the undrained shear strength of the normally consolidated clay are found to agree well with actual measurements. The predicted values by the artificial neural network model have a determination coefficient$(r^2)$ above 0.973 compared with the measured data. Therefore, this results show a positive potential for the applications of well-trained neural network model in predicting the undrained shear strength of cohesive soils.

  • PDF