• Title/Summary/Keyword: artificial joints

Search Result 83, Processing Time 0.03 seconds

Effect of posture correction training in dental scaling using rapid upper limb assessment and 3D motion analysis (Rapid upper limb assessment와 3차원 동작 분석을 활용한 치석제거 자세교정 교육의 효과)

  • Yoon, Tae-Lim;Min, Ji-Hyun;Kim, Han-Na
    • Journal of Korean society of Dental Hygiene
    • /
    • v.18 no.3
    • /
    • pp.269-280
    • /
    • 2018
  • Objectives: The purpose of this study was to investigate the change in the posture of dental hygiene students and clinical dental hygienists when implementing dental scaling before and after posture correction training using the rapid upper limb assessment (RULA) method and 3D motion analysis. Methods: Thirty-two healthy volunteers performed dental scaling to remove artificial calculus on dental manikin. The movement and angle of the joints were verified by RULA and 3D motion analysis during the procedure. The subjects were also photographed for 1 minute during the procedure for 10 minutes while the calculus was removed. After the removal of the calculus, the subject and the instructor checked the video together. Posture correction training was conducted by the instructor so that the subject could perform the calculus removal operation in the correct posture. Artificial calculus of the adjacent teeth was then removed for the same period of time, and the change in posture was reviewed. Results: The total score of the posture change using RULA was $5.72{\pm}0.58$ before training and $4.31{\pm}0.10$ after training, showing a significant decrease after training (p<0.001), and upper arm, lower arm, wrist position, neck and waist position showed significant decrease after training. The three-dimensional motion analysis showed significant differences according to the criteria measured at all measurement sites except the left shoulder (p<0.05) Conclusions: It was confirmed through RULA and 3D motion analysis that postural correction training using calculus removal images was effective, and that correct postural education is essential to preventing musculoskeletal diseases caused by removal of calculus.

The flexural strength Changes by the Low Temperature Degradation of Uncolored zirconia Ceramic for All Ceramic Restoration (전부도재 수복을 위한 무색지르코니아 세라믹의 저온열화에 따른 굴곡강도 변화)

  • Kim, Jung-Sook
    • Journal of Technologic Dentistry
    • /
    • v.31 no.2
    • /
    • pp.39-44
    • /
    • 2009
  • In the orthopedic field which firstly used zirconia as artificial joints, researchers had studied the reasons for collapsing zirconia used as restorative material by accumulated inner cracks in several years and they found out Low Temperature Degradation is one of the reasons. In the dentistry field, it has not been too long since they used zirconia as the cores of all-ceramic restoration; however, the study is needed as prophylactic measure against Low Temperature Degradation which can be caused by saliva wetting the mouth all the time and frictional forces such as bite pressure and masticatory pressure. Artificial aging by autoclaving is used because there are difficulties of testing in the patient's mouth. To study the changes in the material properties, the flexural strength of dental zirconia ceramic is measured before and after the test. The following are the result of the test. 1) The zirconia blocks in the autoclaves at $130^{\circ}C$ and $200^{\circ}C$ are phase-shifted tetragonal to monoclinic by Low Temperature Degradation. 2)The non-autoclaved specimens have the average fractural strength of 1346.4MPa, the specimens autoclaved at $130^{\circ}C$ have 1226.4Mpa and the specimens autoclaved at $200^{\circ}C$ have 1024.1MPa. The tests show that as the temperature increases, the flexural strength tend to decrease and the differences are noticeable(p<0.001). 3)Through the Duncan's post-hoc test, the differences in flexural strength of the 3 groups were listed in order of strength like normal temperature>at $130^{\circ}C$ autoclave low temperature degradation> at $200^{\circ}C$ autoclave low temperature degradation.

  • PDF

Development of an Intrinsic Continuum Robot and Attitude Estimation of Its End-effector Based on a Kalman Filter (내부형 연속체로봇 개발 및 칼만필터를 이용한 말단장치 자세추정)

  • Kang, Chang Hyun;Bae, Ji Hwan;Kang, Bong Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.361-367
    • /
    • 2015
  • This paper presents the design concept of an intrinsic continuum robot for safe man-machine interface and characteristic behaviors of its end-effector based on real experiments. Since pneumatic artificial muscles having similar antagonistic actuation to human muscles are used for main backbones of the proposed robot as well as in the role of the actuating devices, variable stiffness of robotic joints can be available in the actual environment. In order to solve the inherent shortcoming of an intrinsic continuum robot due to bending motion of the backbone materials, a Kalman filter scheme based on a triaxial accelerometer and a triaxial gyroscope was proposed to conduct an attitude estimation of the end-effector of the robot. The experimental results verified that the proposed method was effective in estimating the attitude of the end-effector of the intrinsic continuum robot.

Artificial Joints - Commercialization Opportunity Analysis (인공관절의 사업화 기회 분석)

  • Lee, jong-eun;Kwon, young-il
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.473-477
    • /
    • 2007
  • Industry for artificial joint is a complex one based on various technologies, including mechanics, biotechnology, material engineering, and medicine which are connected closely. This industry has been already known to a higher value-added business, and as going into an aging society, is expected a market growth. Also, it is a knowledge based component industry and each components assembled into product is almost all import items. This characteristics made many small and medium and venture enterprises participate in this area. For these reasons, it is needed a government's promotion. In this study, commercialization environment was analyzed and then commercialization items and strategies was figured out. Firstly, three factors for need, environment, technology were analyzed and then growth drivers growth restraints were provided. Secondly, items and strategies for commercialization were analyzed based on needs and trends of technology. Commercialization opportunities are expected to be created based on strategies following as; building a integrated technology development system, making a public opinion, strengthening a marketing, entering into niche market, B2B strategies etc.

  • PDF

Damage detection in truss bridges using transmissibility and machine learning algorithm: Application to Nam O bridge

  • Nguyen, Duong Huong;Tran-Ngoc, H.;Bui-Tien, T.;De Roeck, Guido;Wahab, Magd Abdel
    • Smart Structures and Systems
    • /
    • v.26 no.1
    • /
    • pp.35-47
    • /
    • 2020
  • This paper proposes the use of transmissibility functions combined with a machine learning algorithm, Artificial Neural Networks (ANNs), to assess damage in a truss bridge. A new approach method, which makes use of the input parameters calculated from the transmissibility function, is proposed. The network not only can predict the existence of damage, but also can classify the damage types and identity the location of the damage. Sensors are installed in the truss joints in order to measure the bridge vibration responses under train and ambient excitations. A finite element (FE) model is constructed for the bridge and updated using FE software and experimental data. Both single damage and multiple damage cases are simulated in the bridge model with different scenarios. In each scenario, the vibration responses at the considered nodes are recorded and then used to calculate the transmissibility functions. The transmissibility damage indicators are calculated and stored as ANNs inputs. The outputs of the ANNs are the damage type, location and severity. Two machine learning algorithms are used; one for classifying the type and location of damage, whereas the other for finding the severity of damage. The measurements of the Nam O bridge, a truss railway bridge in Vietnam, is used to illustrate the method. The proposed method not only can distinguish the damage type, but also it can accurately identify damage level.

Effect of Exoskeleton Orthosis for Assistance of Dorsiflexion Torque in Walking Pattern and Lower-limb Muscle (족배굴곡 보조용 외골격 보조기가 보행자의 보행패턴 및 하지근육에 미치는 효과)

  • Oh, H.J.;Kim, K.;Jeong, G.Y.;Jeong, H.C.;Kwon, T.K.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.8 no.3
    • /
    • pp.177-185
    • /
    • 2014
  • In this study, the exoskeleton orthosis for the assistance of dorsiflexion torque in ankle joint to prevent foot-drop was developed. It was consist of three part; 1) the power part using artificial pneumatic actuator, 2) wearing part of ankle and knee joints to fix the orthosis, and 3) control part to detect the gait phase using physiological signal. The dorsiflexion torque was generated by the artificial pneumatic actuator connected with wearing part between ankle and knee joint. The accurate timing to assist dorsiflexion torque is made up of physiological signal in foot sole part that detect the gait phase, that is, stance and swing phase in each foot. We conduct the experiment to investigate the effect of exoskeleton orthosis to the 7 elderly people and 10 healthy people. The result showed that the muscular activities in tibialis anterior muscle were reduced because of the assistance of dorsiflexion torque in ankle joint using the exoskeleton orthosis.

  • PDF

Development and Application of a Novel Mammalian Cell Culture System for the Biocompatibility and Toxicity of Polymer Films and Metal Plate Biomaterials (고분자필름과 금속막 의료소재에 대한 생체적합성 및 독성 평가를 위한 새로운 세포배양시스템의 개발 및 적용)

  • Kwak, Moon Hwa;Yun, Woo Bin;Kim, Ji Eun;Sung, Ji Eun;Lee, Hyun Ah;Seo, Eun Ji;Nam, Gug Il;Jung, Young Jin;Hwang, Dae Youn
    • Journal of Life Science
    • /
    • v.26 no.6
    • /
    • pp.633-639
    • /
    • 2016
  • Biomaterials including polymer, metal, ceramic, and composite have been widely applied for medical uses as medical fibers, artificial blood vessels, artificial joints, implants, soft tissue, and plastic surgery materials owing to their physicochemical properties. However, the biocompatibility and toxicity for film- and plate-form biomaterials is difficult to measure in mammalian cells because there is no appropriate incubation system. To solve these problems, we developed a novel mammalian cell culture system consisting of a silicone ring, top panel, and bottom panel and we applied two polymer films (PF) and one metal plate (MP). This system was based on the principal of sandwiching a test sample between the top panel and the bottom panel. Following the assembly of the culture system, SK-MEL-2 cells were seeded onto Styela Clava Tunic (SCT)-PF, NaHCO3-added SCT (SCTN)-PF, and magnesium MP (MMP) and incubated at 37℃ for 24 hr and 48 hr. An MTT assay revealed that cell viability was maintained at a normal level in the SCT-PF culture group at 24 or 48 hr, although it rapidly decreased in the SCTN-PF culture group at 48 hr. Furthermore, the cell viability in the MMP culture group was very similar to that of the control group after incubation for 24 hr and 48 hr. Together, these results suggest the sandwich-type mammalian culture system developed here has the potential for the evaluation of the biocompatibility and toxicity of cells against PF- and MP-form biomaterials.

A Study on Stable Motion Control of Humanoid Robot with 24 Joints Based on Voice Command

  • Lee, Woo-Song;Kim, Min-Seong;Bae, Ho-Young;Jung, Yang-Keun;Jung, Young-Hwa;Shin, Gi-Soo;Park, In-Man;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.1
    • /
    • pp.17-27
    • /
    • 2018
  • We propose a new approach to control a biped robot motion based on iterative learning of voice command for the implementation of smart factory. The real-time processing of speech signal is very important for high-speed and precise automatic voice recognition technology. Recently, voice recognition is being used for intelligent robot control, artificial life, wireless communication and IoT application. In order to extract valuable information from the speech signal, make decisions on the process, and obtain results, the data needs to be manipulated and analyzed. Basic method used for extracting the features of the voice signal is to find the Mel frequency cepstral coefficients. Mel-frequency cepstral coefficients are the coefficients that collectively represent the short-term power spectrum of a sound, based on a linear cosine transform of a log power spectrum on a nonlinear mel scale of frequency. The reliability of voice command to control of the biped robot's motion is illustrated by computer simulation and experiment for biped walking robot with 24 joint.

Detection of Defects in Composite Structures by using ESPI (ESPI를 이용한 복합재료 구조물의 결함 검출)

  • Kim, Kyung-Suk;Cheong, Seong-Kyun;Kang, Jin-Shik;Chang, Ho-Seob
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.3
    • /
    • pp.299-306
    • /
    • 2001
  • In this paper, artificial and real defects(delamination and debond) in composite structures were detected by using ESPI system. Three types of specimens, that is, composite laminates, honeycomb structures, and adhesive joints, were used to study the applicability of ESPI to composite structures. To detect defects in specimens, we selected thermal loading method that can easily induce the surface deformation of specimen. Experimental results show that defects in composite structures could be easily detected by ESPI. Moreover, it shows that ESPI could be usefully applied to the detection of defects in various composite structures.

  • PDF

A Study on the Mechanism of Crevice Corrosion for 430 Stainless Steel (430 스테인리스강의 틈부식 발생기구에 대한 연구)

  • 백신영;나은영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.447-452
    • /
    • 2003
  • Crevice corrosion is localized form of corrosion usually associated with a stagnant solution on the micro-environmental level. Such stagnant micro environments tend to occur in crevices (shielded areas) such as those formed under gaskets washers insulation material. fastener heads. surface deposits. disbonded coatings. threads. lap joints and clamps. Crevice corrosion is initiated by changes in located electrochemical reaction within the crevice such as a) depletion of inhibitor in the crevice b) depletion of oxygen in the crevice c) a shift to acid conditions in the crevice and d) build-up of aggressive ion species (e.g chloride) in the crevice. In this study. the mechanism of crevice corrosion for Type 430 stainless steel is investigated undercondition that the size of specimen is $15{\times}20\{times}3mm$, in 1N $H_2SO_4$ + 0.05N NaCl solution. and the artificial crevice gap size of 3 x 0.2 x 15 mm. Crevice corrosion is measured under applied potential -300mV(SCE) to the external surface. The obtained result of this study showed that 1) the induced time for initiation of crevice is 750 seconds. 2) potential of the crevice was about from -320mV to -399mV. which is lower than that of external surface potential of -300mV It is considered that potential drop in the crevice is one of mechanisms for the crevice corrosion