• Title/Summary/Keyword: artificial joint

Search Result 274, Processing Time 0.035 seconds

A two-step approach for joint damage diagnosis of framed structures using artificial neural networks

  • Qu, W.L.;Chen, W.;Xiao, Y.Q.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.5
    • /
    • pp.581-595
    • /
    • 2003
  • Since the conventional direct approaches are hard to be applied for damage diagnosis of complex large-scale structures, a two-step approach for diagnosing the joint damage of framed structures is presented in this paper by using artificial neural networks. The first step is to judge the damaged areas of a structure, which is divided into several sub-areas, using probabilistic neural networks with natural Frequencies Shift Ratio inputs. The next step is to diagnose the exact damage locations and extents by using the Radial Basis Function (RBF) neural network with the second Element End Strain Mode of the damaged sub-area input. The results of numerical simulation show that the proposed approach could diagnose the joint damage of framed structures induced by earthquake action effectively and has reliable anti-jamming abilities.

Shear Strength and Deformation Behavior of Rock Joint with Roughness (절리면의 거칠기에 따른 암석 절리의 전단강도 및 변형거동에 관한 연구)

  • 이상돈;강준호;이정인
    • Tunnel and Underground Space
    • /
    • v.4 no.3
    • /
    • pp.261-273
    • /
    • 1994
  • Direct shear tests were carried out on the rock joints and artificial discontinuities to investigate the influence of joint roughness on the shear strength and deformation behaviour. Single direct shear testing apparatus used in experiment was designed and manufactured. Its capacity is 200 tons of shear load, 20 tons of normal load and 50$\textrm{cm}^2$ of maximum shear area. Test samples were cement mortar with artificial discontinuity and sandstone with natural joint. Peak shear strength was increased as joint roughness or normal stress was increased, especially, linearly increased with roughness angle in cement mortar. If joint roughness angle was constant at low normal stress, shear strength was not affected by width and height of joint roughness in cement mortar. Peak shear strengths obtained from tests were larger than the values calculated by Barton's equation, and shear stiffness was increased with joint roughness coefficient.

  • PDF

Current Research on the Stress Analysis of Artificial Knee Joint (인공 슬관절의 응력 해석에 관한 연구)

  • Lee Jae-Hwan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.240-245
    • /
    • 2005
  • In this paper, the current research for the biomechanics of artificial knee joints including experiments and stress analysis is surveyed and Introduced. The knee joint is the most large and the motion is very complicated, so the design of artificial joint is difficult and most research Is being done abroad. Up to date, most products are foreign products and Imported here and the gap between here and advanced countries of the technical and capability for the design and manufacturing is too deep to follow. So, the contents of papers in this area including the most excellent results are introduced. And the preliminary research on the contact stress analysis of the joints is present.

  • PDF

Predicting the Human Multi-Joint Stiffness by Utilizing EMG and ANN (인공신경망과 근전도를 이용한 인간의 관절 강성 예측)

  • Kang, Byung-Duk;Kim, Byung-Chan;Park, Shin-Suk;Kim, Hyun-Kyu
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.1
    • /
    • pp.9-15
    • /
    • 2008
  • Unlike robotic systems, humans excel at a variety of tasks by utilizing their intrinsic impedance, force sensation, and tactile contact clues. By examining human strategy in arm impedance control, we may be able to teach robotic manipulators human''s superior motor skills in contact tasks. This paper develops a novel method for estimating and predicting the human joint impedance using the electromyogram(EMG) signals and limb position measurements. The EMG signal is the summation of MUAPs (motor unit action potentials). Determination of the relationship between the EMG signals and joint stiffness is difficult, due to irregularities and uncertainties of the EMG signals. In this research, an artificial neural network(ANN) model was developed to model the relation between the EMG and joint stiffness. The proposed method estimates and predicts the multi joint stiffness without complex calculation and specialized apparatus. The feasibility of the developed model was confirmed by experiments and simulations.

  • PDF

A Basic Study on Functional Friction Surface of Artificial Joints (내마모성이 향상된 기능성 표면구조를 갖는 인공관절에 관한 기초적인 연구)

  • ;T. Yuhta
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.6
    • /
    • pp.519-526
    • /
    • 2001
  • At present. about 0.3 million and more THRs (Total Hip Replacement) in a rear are being done worldwide. The increase in mechanical failure with the increase in THR, required more revisions. Revisions compensate mainly the wear of the artificial joint frictional surface and the loosening of the cup and stem. According to recent researches, loosening is mainly due to wear debris UHMWPE (Ultra High Molecular Weight Polyethylene) from frictional surfaces . To overcome the wear problems associated with artificial joint materials , new surface structures with regular Patterns were designed and fabricated The lubrication Properties were examined to evaluate the wear of the frictional surfaces. The surface structure manifested a Pattern of "dents" with a 0.2-1.0 mm of diameter and 0.6-2.0 mm of Pitch. From the friction test of the SUS316L vs UHMWPE using the frictional tester, we found that the lubrication Performance was improved due to of drastically reduced amount of abrasion. There were optimum sizes for the diameter and the pitch of the Pattern. The results demonstrated that the lubrication properties could be improved by Patterning of the frictional surfaces. The surface Patterning was effective in preventing wear of the frictional surfaces, and the life of an artificial joint could be extended with such Patterning.

  • PDF

A Study on the Contact Stress Analysis of the Artificial Hip Joint Using Finite Element Method (유한요소법을 이용한 인공 고관절의 접촉응력 해석에 관한 연구)

  • 김청균;윤종덕
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.189-194
    • /
    • 1996
  • The modern orthopaedics frequently uses the total hip replacement in the artificial hip joint. The wear in this joint requires the re-replacement of the hip joint beacuse it is under the severe load and friction conditions. To solve these problems the previous studies have been mainly focused on the development of the new materials. The research of new material, however, needs much time and effort since it should be experimented for its bio-compatibility, friction, and wear characteristics. To reduce the work, in this study, the finite element analysis is applied to find the new combination of the materials in the total hip replacement which has the excellent contact characteristics. The finite element uses MARC and the 5-node aximetric element. The results show that in case of acetabulum UHMWP has good characteristics, in femoral head, the $Al_2O_3$, and in stem, Ti6Al4V.

  • PDF

Roughness Mobilization Characteristics of Artificial Triangular Asperities (인공 삼각 돌출부의 거칠기 발현특성)

  • Hong, Eun-Soo;Choi, Sung-Oong;Lee, In-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.760-767
    • /
    • 2006
  • Underestimation of rock joint shear strength comes from an inadequate consideration of roughness mobilization behavior, which is changed by asperity size as well applied normal load. In this study, we performed rock joint shear tests, and studied the roughness mobilization characteristics related with the scale of normal stress and asperities. Test specimens with artificial triangular asperities were manufactured. The specimens consisted of 3 types, and each type represented unevenness, waviness and total roughness(superposition of unevenness and waviness). The experimental results show that the roughness mobilization characteristics are varied by the scale of normal stress and asperities. Furthermore, the investigation shows that the rate of geometrical component and mechanical component in the total roughness is also varied by the scale of normal stress and asperities. These results suggest that we should consider the roughness mobilization characteristics for the roughness quantification and the shear strength modelling.

  • PDF

Functional Motion Analysis of Wrist Joints (손목관절의 기능적 운동 특성의 동작 분석)

  • Han Jung Soo
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.6 s.81
    • /
    • pp.543-548
    • /
    • 2003
  • Injuries of wrist in upper extremity is common onset in industrialized world. The development of joint arthroplasty and mechanical joint is area of research for biomechanical engineer and surgeon for a decade. Therefore. the knowledge of characteristic of joint motion is essential to develop the artificial wrist joint. In this study. the joint motions of wrist required for activities of daily living (ADLs). including personal hygiene and care. and general home activity were measured using flexible electrogoniometer. Total of 25 different daily activities were separated into four groups and tested on 15 subjects who did not show any abnormality of their joint functions. The maximum functional range of motion required for ADLs were obtained and standardized for analysis and comparison. Also. a least functional range of motion for ADLs were investigated. Results revealed that any significant differences were not found in least functional range of motion between left and right wrist to perform ADLs. However. a significant difference was found in different ADLs. Therefore. least range of motion obtained in this study can be used as basic data to design artificial joint and set a goal for surgeon to achieve appropriate treatment from patients.

Surgical Treatment of the Acute Acromioclavicular Joint Dislocation with a LIGASTIC Artificial Ligament (LIGASTIC 인공인대를 이용한 급성 견봉 쇄골 탈구의 수술적 치료)

  • Choi Sun-Jin;Kim Sang-Hyo;Park Han-Sung
    • Clinics in Shoulder and Elbow
    • /
    • v.8 no.2
    • /
    • pp.135-140
    • /
    • 2005
  • Purpose: To find out the early results after surgical treatment of the acute acromioclavicular dislocation with LIGASTIC artificial ligament. Material and Method: 6 patients who were diagnosed as acute acomioclavicular joint dislocation and treated with LIGASTIC artifical ligament through March 2005 to July 2005. The radiologic and clinical results using Imatani evaluation system were analyzed. Results: By clinical evaluation, 4 cases(67%) were excellent and 2 cases(33%) were good. By radiologic evaluation, 3 cases(50%) were excellent and 3 cases(50%) were good. All cases showed satisfactory results. Till the final follow up, there were no complication. Conclusion: Surgical treatment of the acute acromioclavicular dislocation with LIGASTIC articifial ligament is simple, but provides enough stability for early postoperative rehabilitation, decreases arthritis of acomioclavicular joint and there is no burden of removal of the fixture, so it is thought as a very effective surgery.