• Title/Summary/Keyword: artificial island

Search Result 228, Processing Time 0.034 seconds

A Study on the Coastal Development Model Due to the Construction of Artificial Island (인공섬건설에 따른 해안선변형모델에 관한 연구)

  • 오세욱;민병형;김기철;김재중
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.133-142
    • /
    • 1992
  • Beach evolution is of the most important problem is the coastal engineering. Especially, the structure construction through reclamation in the shallow water region nesar the beach will cause many severe problems around the structure. Beach evolution due to the construction of an artificial island in this study was studied using wave transform model and associated of an artificial island in this study was studied using wave transform model and associated sediment transport model. Numerical simulation of the model was applied to the Kwangan beach using the data of waves and shoreline of the area. The combined wave transform model and beach evolution model showed good results. The results show a breakwater will be needed to prevent severe erosion near the eastward Kwangan beach when construction an artificial island in the Suyong Bay. Good results of the study also suggest that the present model can be more widely applied to the prediction of beach evolution.

  • PDF

Analysis of Patents Artificial Floating Island for Maximizing the Development of Water Purification (수질 정화 기능 극대화 인공식물섬 개발을 위한 특허 동향 분석)

  • Kim, Jeong-Ho;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.21 no.7
    • /
    • pp.825-835
    • /
    • 2012
  • This study for the development of water purification Artificial floating island maximizing domestic Artificial floating island patent trends and product development, according to the timing of patent registration was analyzed for trends. In addition, domestic invention patent technology Artificial floating island typed according to the purpose and characteristics of domestic patents were Artificial Floating Island. In particular, domestic leisure space with a growing population and the need for securing emerging role as a reservoir of water only in the past, who do appeal as a tourist destination or as an ecological space utilized, and accordingly will transform and the need to secure a hydrophilic, degrade water quality problems using this aquatic environment (water acquisition and hydrophilic), the requirements are a big obstacle is the reality factor. This patented product differentiation strategy through the analysis of the development of technology progressiveness (Field Application) in terms of water quality improvement and maintenance side, and the hydrophilic side scenery, ecological restoration aspects, and applicability to the field and taking into account existing technology economic aspects of distinction were presented and advertised a lot in terms of cost compared to other techniques without the use of highly efficient methodology for building a water purification and also appears identity appeal, wetlands, rivers, etc. can be applied broadly technician widespread deployment and installation time to less simple and more are expected to spread.

Development of Artificial Floating Island for the Wild-Life Habitat (효율적인 생물서식공간을 위한 인공부도 조성기법 개발)

  • Sim, Woo-Kyung;Lee, Kwang-Woo;Ahn, Chang-Youn;Kim, Min-Kyung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.2
    • /
    • pp.84-91
    • /
    • 2001
  • This study was carried out to develop the technology of artificial floating island for the wild-life habitat at the reservoir of Korea University farm near Seoul. After the execution of an artificial floating island with 6 cells(each $3{\times}3m$), each cell was planted with 5 different species and one mixed of them, to the reservoir in 1999 through 2000. The monitored results were as follows; 1. Typha orientalis, Zizania latifolia and Oenanthe japonica were died back, but Phragmites communis, Phragmites japonica and Juncus effusus var. decipiens were well growing. 2. The limits of sinking water depth of the planting foundation were different with the plant species, that is, 40cm to the Juncus effusus var. dicipiens and 50cm to Phragmites communis. Accordingly the water depth should be kept differently with each species. 3. 33 species of fauna were monitored in the first year(1999) and 43 species in the second (2000) increasingly. 4. For the more wild-lives inducing to the artificial floating island, establishing the eco-corridor from the surrounding environment was needed.

  • PDF

Water Quality Improvement by Artificial Floating Island (인공섬을 이용한 소형 저수지의 수질 개선)

  • Park, Hyun-Jin;Kwon, Oh-Byeong;Ahn, Tae-Seok
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.1
    • /
    • pp.90-97
    • /
    • 2001
  • For improvement of water quality, $20m^2$ of artificial floating plant islands planted with Iris pseudoacorus, were installed in small pond on March, 1999. Small pond has surface area $1,000m^2$ and mean depth 1.5 m. The density of plants was 16 per $m^2$ by using jute pot. Environmental parameters such as COD, SS, T-N, T-P and planktons were biweekly measured from 29 March to 28 September. Because of the small portion of floating island, the effect for water quality improvement was not sufficient. But considering the data of plant growth and nitrogen and phosphorus uptake capacity of plant, about 40% of coverage by artificial floating island was needed for elimination of whole nutrients from inflow.

  • PDF

Seasonal variation and species composition of fish species in artificial reefs in the Shinyang-Ri coastal waters off Jeju island, Korea (제주 신양리 연안 인공어초 주변해역에서 서식하는 어류의 종조성 및 계절변동)

  • Kim, Jae-Woo;Kim, Ha-Won;Huh, Sung-Hoi;Kwak, Seok-Nam
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.2
    • /
    • pp.118-127
    • /
    • 2011
  • This study was investigated seasonal variation and species composition of fish species at artificial reefs (octangle three-stage compartment type and dice type)and natural rock in the Shinyang-Ri coastal waters off Jeju Island with visual census method in January 2009, April 2009, July 2009, September 2009, December 2009, March 2010, June 2010, and September 2010. A total of 44 fish species was occurred, and the dominant fish species were Apogon semilineatus, Chromis notata, Trachurus japonicus, Sebastes thompsoni and Apogon doederleini. The number of individuals of fishes was higher at April 2009 and March 2010, however, lower at June 2010 and September 2010. The number of fish speices was higher at artificial reefs than those of at natural rock. Apogon semilineatus was dominant at octangle three-stage compartment type and the dice type artificial reefs, whereas Chromis notata was for natural rock. These results indicated that artificial reefs were good habitats for a variety of fish species in the Shinyang-Ri coastal waters off Jeju Island.

Landscape Analysis of the Effects of Artificial Lighting around Wetland Habitats on the Giant Water Bug Lethocerus deyrollei in Jeju Island

  • Choi, Ho;Kim, Heung-Tae;Kim, Jae-Geun
    • Journal of Ecology and Environment
    • /
    • v.32 no.2
    • /
    • pp.83-86
    • /
    • 2009
  • We conducted a landscape analysis to investigate the possibility of adverse effects of anthropogenic light sources, such as roads and residential buildings, on Lethocerus deyrollei on Jeju Island, Wetlands inhabited by L. deyrollei had fewer anthropogenic structures within a 3 km radius that had the potential to produce artificial light at night than wetlands not inhabited by L. deyrollei, In particular, the presence of artificial lights within a 1 km radius appears to reduce the probability of inhabitation by L. deyrollei, Our results suggest that artificial light sources may be critical determinants of L. deyrollei inhabitation patterns in a landscape, and that habitats that have a buffer area of at least 600$\sim$700 m radius free from residential buildings are the most appropriate habitats for L. deyrollei.

The Effect of Artificial Floating Island to Zooplankton and Phytoplankton in Shingu Reservoir, Korea (신구저수지에서 인공식물섬이 동.식물플랑크톤 군집에 미치는 영향)

  • Lee, Eun-Joo;Cho, Ahn-Na;Kwon, Oh-Byung;Ahn, Tea-Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.1
    • /
    • pp.19-25
    • /
    • 2009
  • The effects of artificial floating island on the changes in phytoplankton and zooplankton community structure were investigated monthly from September 2006 to May 2007 in Shingu reservoir. The total cell number of phytoplankton under the artificial floating island was three times less than those of control (without artificial floating island). The dominant species of phytoplankton were Lyngbya sp. on September, Cryptomonas sp. from October to January, Aulacoseira granulata on February and Oscillatoria sp. from March to May at lake water. Cyanophyta was dominated from February to March at lake water but it was dominated from March at artificial floating island area. The total individual number, species number of zooplankton and species diversity of phytoplankton and zooplankton under the artificial floating island were higher than those of lake water.

Modeling Artificial Groundwater Recharge in the Hancheon Drainage Area, Jeju island, Korea (제주도 한천유역 지하수 모델개발을 통한 인공함양 평가)

  • Oh, Se-Hyoung;Kim, Yong-Cheol;Koo, Min-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.6
    • /
    • pp.34-45
    • /
    • 2011
  • For the Hancheon drainage area in Jeju island, a groundwater flow model using Visual MODFLOW was developed to simulate artificial recharge through injection wells installed in the Hancheon reservoir. The model was used to analyze changes of the groundwater level and the water budget due to the artificial recharge. The model assumed that $2{\times}10^6m^3$ of storm water would recharge annually through the injection wells during the rainy season. The transient simulation results showed that the water level rose by 39.6 m at the nearest monitoring well and by 0.26 m at the well located 7 km downstream from the injection wells demonstrating a large extent of the affected area by the artificial recharge. It also shown that, at the time when the recharge ended in the 5th year, the water level increased by 81 m at the artificial reservoir and the radius of influence was about 2.1 km downstream toward the coast. The residence time of recharged groundwater was estimated to be no less than 5 years. The model also illustrated that 15 years of artificial recharge could increase the average linear velocity of groundwater up to 1540 m/yr, which showed 100 m/yr higher than before. Increase of groundwater storage due to artificial recharge was calculated to be $2.4{\times}10^6$ and $4.3{\times}10^6m^3$ at the end of the 5th and 10th years of artificial recharge, respectively. The rate of storage increase was gradually diminished afterwards, and storage increase of $5.0{\times}10^6m^3$ was retained after 15 years of artificial recharge. Conclusively, the artificial recharge system could augment $5.0{\times}10^6m^3$ of additional groundwater resources in the Hancheon area.

Seasonal variation and species composition of fishes communities in artificial reef unit at marine ranching area in the coastal waters off Jeju island, Korea (제주바다목장 해역 내 인공 어초군에 서식하는 어류군집의 종조성 및 계절변동)

  • Oh, Taeg-Yun;Cha, Hyung-Kee;Chang, Dae-Soo;Hwang, Choul-Hee;Nam, Yun-Ju;Kwak, Seok-Nam;Son, Min-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.2
    • /
    • pp.139-147
    • /
    • 2010
  • This study monitored a variety of marine fish communities in artificial reefs unit of the total 5 types (Dice type, Octagonal turtle type, Two-stage tube type, Gazebo type, Tetrapod type) which are located in the marine ranching at Jeju island by scuba diving in May, July, October and December 2009. Underwater photographing was accomplished at total 3 phases (condition of artificial reefs photographing, concentric circle movement photographing and line transect photographing). The preservation condition of artificial reefs facility was very good, and the dominant species were Chromis notatus, Sebastes thompsoni, Oplegnathus fasciatus and Halichoeres poecilopterus. Fish abundance was high in May and June, and low in October and December, 2009. Chromis notatus was dominant at the all types of artificial reefs, Halichoeres poecilopterus for Gazebo type and Tetrapod type of artificial reefs, and Sebastes thompsoni for Dice type, Octagonal turtle type and Two-stage tube type of artificial reefs.

Changes of Zooplankton Community in an Artificial Vegetation Island of Lake Paldang (팔당호에서 인공 수초재배섬 설치에 따른 동물플랑크톤 군집 변화)

  • You, Kyung-A;Park, Hae-Kyung;Byeon, Myeong-Seop;Jeon, Nam-Hui;Choi, Myung-Jae;Yun, Seok-Hwan;Kong, Dong-Soo
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.3
    • /
    • pp.339-347
    • /
    • 2007
  • Zooplankton community dynamics were studied after establishment of an artificial vegetation island (AVI) in Lake Paldang, from April 2005 to November 2006. There were distinct seasonal and inter-annual changes of total zooplankton abundance at the survey site. Total zooplankton abundance rapidly increased in spring and fall, while it remained low throughout winter. During summer, the dynamics of zooplankton community seemed to be largely affected by hydrological parameters such as, precipitation and inflow. Total zooplankton abundance and biomass below AVI was much higher than that of pelagic zone (L1) in Lake Paldang. Copepoda and cladocera represented the main bulk of the zooplankton community from summer to fall at the both sites. Copepods were more dominant at AVI area, while cladocera were more dominant at pelagic zone (L1). Water quality, prey and habitat condition, species competition between zooplankton seemed to play important roles in dominance of the copepoda and cladocera in zooplankton community at AVI area. Our results conclude that artificial vegetation island provide the stable habitat and besides phytoplankton, diverse food to zooplankton, and consequently influence the diversity and richness of zooplankton community.