• Title/Summary/Keyword: artificial intelligent

Search Result 1,141, Processing Time 0.027 seconds

A Study on the Organizational Development for Intelligent Technology Acceptance in ESG Management (ESG 경영을 위한 지능형 기술을 수용하는 조직개발 연구)

  • Jung Byoungho;Joo Hyungkun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.1
    • /
    • pp.77-89
    • /
    • 2023
  • The purpose of this study is to empirically confirm what is an important variable of organizational change by intelligent technology acceptance and whether is a difference in important variables in the organization level of acceptance of intelligent technology. Recently, business models using intelligent technologies such as chat-bots, self-driving cars, credit-prevention fraud, face recognition, and health-care are emerging. External situation factors such as artificial intelligence, big data, COVID-19, and the ESG management are changing the direction of a company's management strategy. This research method established a structural equation model. As a result of the analysis, we found that the leadership, organizational culture, and organizational cooperation variables had a positive effect on human resource development variables. Human resource development found a positive effect on the performance of intelligent technology. In addition, we found the independent variables of leadership, organizational culture, and organizational cooperation had partial mediating effects on the performance of intelligent technology. Each group of levels of intelligent technology found performance differences. The organizational culture variables appeared as important variables in all groups. On the other hand, the leadership variable appeared as an important variable in the middle and lower groups of intelligent technology. The theoretical background of this study is that the business theory was updated through artificial intelligence and intelligent technology theory. As a practical implication, the organization adopting intelligent technology is necessary to prepare a systematic plan for organizational culture change.

Clinical applications and performance of intelligent systems in dental and maxillofacial radiology: A review

  • Nagi, Ravleen;Aravinda, Konidena;Rakesh, N;Gupta, Rajesh;Pal, Ajay;Mann, Amrit Kaur
    • Imaging Science in Dentistry
    • /
    • v.50 no.2
    • /
    • pp.81-92
    • /
    • 2020
  • Intelligent systems(i.e., artificial intelligence), particularly deep learning, are machines able to mimic the cognitive functions of humans to perform tasks of problem-solving and learning. This field deals with computational models that can think and act intelligently, like the human brain, and construct algorithms that can learn from data to make predictions. Artificial intelligence is becoming important in radiology due to its ability to detect abnormalities in radiographic images that are unnoticed by the naked human eye. These systems have reduced radiologists' workload by rapidly recording and presenting data, and thereby monitoring the treatment response with a reduced risk of cognitive bias. Intelligent systems have an important role to play and could be used by dentists as an adjunct to other imaging modalities in making appropriate diagnoses and treatment plans. In the field of maxillofacial radiology, these systems have shown promise for the interpretation of complex images, accurate localization of landmarks, characterization of bone architecture, estimation of oral cancer risk, and the assessment of metastatic lymph nodes, periapical pathologies, and maxillary sinus pathologies. This review discusses the clinical applications and scope of intelligent systems such as machine learning, artificial intelligence, and deep learning programs in maxillofacial imaging.

Study of Posture Evaluation Method in Chest PA Examination based on Artificial Intelligence (인공지능 기반 흉부 후전방향 검사에서 자세 평가 방법에 관한 연구)

  • Ho Seong Hwang;Yong Seok Choi;Dae Won Lee;Dong Hyun Kim;Ho Chul Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.167-175
    • /
    • 2023
  • Chest PA is the basic examination of radiographic imaging. Moreover, Chest PA's demands are constantly increasing because of the Increase in respiratory diseases. However, it is not meeting the demand due to problems such as a shortage of radiological technologist, sexual shame caused by patient contact, and the spread of infectious diseases. There have been many cases of using artificial intelligence to solve this problem. Therefore, the purpose of this research is to build an artificial intelligence dataset of Chest PA and to find a posture evaluation method. To construct the posture dataset, the posture image is acquired during actual and simulated examination and classified correct and incorrect posture of the patient. And to evaluate the artificial intelligence posture method, a posture estimation algorithm is used to preprocess the dataset and an artificial intelligence classification algorithm is applied. As a result, Chest PA posture dataset is validated with in over 95% accuracy in all artificial intelligence classification and the accuracy is improved through the Top-Down posture estimation algorithm AlphaPose and the classification InceptionV3 algorithm. Based on this, it will be possible to build a non-face-to-face automatic Chest PA examination system using artificial intelligence.

Technological Trends in Intelligent Cyber Range (지능형 사이버 훈련장의 기술 동향)

  • Yu, J.H.;Koo, K.J.;Kim, I.K.;Moon, D.S.
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.4
    • /
    • pp.36-45
    • /
    • 2022
  • As the interest in achieving an intelligent society grows with the fourth industrial revolution's development, information and communications technologies technologies like artificial intelligence (AI), Internet of Things, virtual reality, information security, and blockchain technology are being actively employed in different fields for achieving an intelligent society. With these modifications, the information security paradigm in industrial and public institutions, like personal sensitive data, is quickly changing, and it is exposed to different cyber threats and breaches. Furthermore, as the number of cyber threats and breaches grows, so does the need for rapid detection and response. This demand can be satisfied by establishing cyber training programs and fostering experts that can improve cyber security abilities. In this study, we explored the domestic and international technology trends in cyber security education and training facilities for developing experts in information security. Additionally, the AI technology application in the cyber training ground, which can be established to respond to and deter cyber threats that are becoming more intelligent, was examined.

Intelligent Switching Control of a Pneumatic Artificial Muscle Robot using Learning Vector Quantization Neural Network (학습벡터양자화 뉴럴네트워크를 이용한 공압 인공 근육 로봇의 지능 스위칭 제어)

  • Yoon, Hong-Soo;Ahn, Kyoung-Kwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.4
    • /
    • pp.82-90
    • /
    • 2009
  • Pneumatic cylinder is one of the low cost actuation sources which have been applied in industrial and prosthetic application since it has a high power/weight ratio, a high-tension force and a long durability However, the control problems of pneumatic systems, oscillatory motion and compliance, have prevented their widespread use in advanced robotics. To overcome these shortcomings, a number of newer pneumatic actuators have been developed such as McKibben Muscle, Rubber Actuator and Pneumatic Artificial Muscle (PAM) Manipulators. In this paper, one solution for position control of a robot arm, which is driven by two pneumatic artificial muscles, is presented. However, some limitations still exist, such as a deterioration of the performance of transient response due to the changes in the external load of the robot arm. To overcome this problem, a switching algorithm of the control parameter using a learning vector quantization neural network (LVQNN) is proposed in this paper. This estimates the external load of the pneumatic artificial muscle manipulator. The effectiveness of the proposed control algorithm is demonstrated through experiments with different external working loads.

Recent Progress of Smart Sensor Technology Relying on Artificial Intelligence (인공지능 기반의 스마트 센서 기술 개발 동향)

  • Shin, Hyun Sik;Kim, Jong-Woong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.3
    • /
    • pp.1-12
    • /
    • 2022
  • With the rapid development of artificial intelligence technology that gives existing sensors functions similar to human intelligence is drawing attention. Previously, researches were mainly focused on an improvement of fundamental performance indicators as sensors. However, recently, attempts to combine artificial intelligence such as classification and prediction with sensors have been explored. Based on this, intelligent sensor research has been actively reported in almost all kinds of sensing fields such as disease detection, motion detection, and gas sensor. In this paper, we introduce the basic concepts, types, and driving mechanisms of artificial intelligence and review some examples of its use.

High Performance Controller of Induction Motor with Hybrid Artificial Intelligent Control (하이브리드 인공지능 제어기에 의한 유도전동기의 고성능 제어)

  • Park, Byung-Sang;Choi, Jung-Sik;Ko, Jae-Sub;Lee, Jung-Ho;Kim, Jong-Kwan;Park, Ki-Tae;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.737-738
    • /
    • 2006
  • This paper is proposed hybrid artificial intelligent controller for high performance of induction motor drive. The design of this algorithm based on fuzzy-neural network controller that is implemented using fuzzy control and neural network. The control performance of the hybrid artificial intelligent controller is evaluated by analysis for various operating conditions. The results of experiment prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

  • PDF

Development of intelligent agent system for automated ship CAE modelling by non-deterministic optimized methods (비 결정론적 최적화 기법을 이용한 선박의 CAE 모델링 자동화를 위한 지능형 에이전트 시스템의 개발)

  • Bae, Dong-Myung;Kim, Hag-Soo;Shin, Chang-Hyuk;Wang, Qing
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.44 no.1
    • /
    • pp.57-67
    • /
    • 2008
  • Recently, Korean shipbuilding industry is keeping up the position of world wide No. 1 in world shipbuilding market share. It is caused by endless efforts to develope new technologies and methods and fast development of IT technologies in Korea, to raise up its productivities and efficiency in shipbuilding industry with many kinds of optimizing methods including genetic algorithm or artificial life algorithm... etc. In this paper, we have suggested the artificial life algorithm with relay search micro genetic algorithm. and we have improved a defect of simple genetic algorithm for its slow convergence speed and added a variety of solution candidates with applying relay search simple genetic algorithm. Finally, we have developed intelligent agent system for ship CAE modeling. We have tried to offer some conveniences a ship engineer for repeated ship CAE modeling by changing ship design repeatedly and to increase its accuracy of a ship model with it.

Review on Advanced Health Monitoring Methods for Aero Gas Turbines using Model Based Methods and Artificial Intelligent Methods

  • Kong, Changduk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.123-137
    • /
    • 2014
  • The aviation gas turbine is composed of many expensive and highly precise parts and operated in high pressure and temperature gas. When breakdown or performance deterioration occurs due to the hostile environment and component degradation, it severely influences the aircraft operation. Recently to minimize this problem the third generation of predictive maintenance known as condition based maintenance has been developed. This method not only monitors the engine condition and diagnoses the engine faults but also gives proper maintenance advice. Therefore it can maximize the availability and minimize the maintenance cost. The advanced gas turbine health monitoring method is classified into model based diagnosis (such as observers, parity equations, parameter estimation and Gas Path Analysis (GPA)) and soft computing diagnosis (such as expert system, fuzzy logic, Neural Networks (NNs) and Genetic Algorithms (GA)). The overview shows an introduction, advantages, and disadvantages of each advanced engine health monitoring method. In addition, some practical gas turbine health monitoring application examples using the GPA methods and the artificial intelligent methods including fuzzy logic, NNs and GA developed by the author are presented.