• 제목/요약/키워드: artificial intelligence service

검색결과 579건 처리시간 0.026초

Reddit 소셜미디어를 활용한 ChatGPT에 대한 사용자의 감정 및 요구 분석 (Analysis of Users' Sentiments and Needs for ChatGPT through Social Media on Reddit)

  • 나혜인;이병희
    • 인터넷정보학회논문지
    • /
    • 제25권2호
    • /
    • pp.79-92
    • /
    • 2024
  • ChatGPT는 생성형 인공지능(Generative AI) 기술을 활용한 대표적인 챗봇으로서 과학기술 영역뿐만 아니라 사회, 경제, 산업, 문화 등 당양한 분야에서 유용하게 활용되고 있다. 본 연구는 글로벌 소셜미디어 레딧(Reddit)을 활용해 ChatGPT에 대한 사용자의 감정과 요구에 대한 탐색적인 분석을 수행한다. 이를 위해, 2022년 12월부터 2023년 8월까지의 댓글 10,796건을 수집하여 키워드 분석, 감성 분석, 니드마이닝(Needmining) 기반 토픽모델링을 실시하였다. 분석 결과, ChatGPT에 대한 댓글에서 출현 빈도가 가장 높은 단어는 "time"으로 답변의 신속성, 시간 효율성, 생산성 향상을 강조한 것으로 나타났다. 사용자들은 ChatGPT에 대해 신뢰와 기대의 감정과 동시에 사회적 영향에 대한 두려움과 분노의 감정을 표현하였다. 또한, 토픽모델링 분석을 통해 잠재적 니즈(Needs)를 포함한 14개의 주제를 도출하였고, 사용자들이 특히 ChatGPT에 대한 교육적 활용과 사회적 영향에 많은 관심을 보였다. 또한, ChatGPT와 관련된 언어모델, 직업, 정보, 의료, 서비스, 게임, 규제, 에너지, 윤리적 문제 등 다양한 주제들이 논의된 것을 알 수 있었다. 분석 결과를 바탕으로 사용자들의 요구를 반영하여 향후 실행계획의 방향을 제시하였다. 본 연구는 향후 ChatGPT를 이용하여 제품과 서비스를 개선하고, 새로운 서비스 플랫폼 기획 단계에서 유용한 정보를 제공할 것으로 기대된다.

텍스트 마이닝 기반 사용자 경험 분석 및 관리: 스마트 스피커 사례 (User Experience Analysis and Management Based on Text Mining: A Smart Speaker Case)

  • 연다인;박가연;김희웅
    • 경영정보학연구
    • /
    • 제22권2호
    • /
    • pp.77-99
    • /
    • 2020
  • 스마트 스피커는 인공지능을 활용하여 음악, 일정, 날씨, 상품 등 다양한 정보와 콘텐츠들을 검색, 이용할 수 있는 대화형 음성 기반 서비스를 제공하는 기기이다. 인공지능 기술은 데이터가 축적될수록 이를 활용하여 더욱 정교하고 최적화된 서비스를 이용자에게 제공한다. 따라서 스마트 스피커 제조사들은 초기에 공격적인 마케팅을 통해 플랫폼 구축에 힘썼다. 하지만 스마트 스피커의 사용빈도는 월 1회 미만이 전체의 3분의 1 이상을 차지하고, 사용자 만족도도 49%에 그치는 것으로 나타났다. 이에 지속적인 이용활성화와 만족도 증진을 위해 스마트 스피커의 사용자 경험을 강화할 필요성이 대두되었다. 이에 본 연구에서는 스마트 스피커의 사용자 경험을 분석하고, 이를 바탕으로 스마트 스피커의 사용자 경험 강화 방안을 제시하고자 한다. 본 연구는 사용자가 직접 작성한 실제 리뷰 데이터를 수집하여 스마트 스피커 사용자 경험 차원을 기반으로 분석 결과를 해석했다는 점에서 의의가 있다. 또한 스마트 스피커 사용자 경험 차원을 개발하여 텍스트 마이닝 결과를 해석한 것에서 학술적 의의가 있다. 본 연구 결과를 통해 스마트 스피커 제조사에게 실무적으로 사용자 경험 강화를 위한 전략을 제안할 수 있다.

초등교사들의 인공지능 활용 수학수업 지원시스템 사용 의도에 영향을 미치는 요인 연구: <똑똑! 수학탐험대> 사례를 중심으로 (A study on the factors of elementary school teachers' intentions to use AI math learning system: Focusing on the case of TocToc-Math)

  • 이경화;여승현;탁병주;최종현;손태권;옥지현
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제63권2호
    • /
    • pp.335-350
    • /
    • 2024
  • 인공지능 활용 수학수업 지원시스템에 대한 교사의 사용 의도는, 인공지능을 활용하지 않은 전통적인 수학수업 환경에서 구현하기 어려웠던 다양한 수학학습 기회를 제공하는 데 핵심적인 역할을 한다. 본 연구는 초등교사의 인공지능 활용 수학수업 지원시스템 사용 의도에 영향을 미치는 요인을 탐색하고, 요인 간의 구조적 관계를 분석하는 데 목표를 두었다. 이를 위해 기술 수용 모델을 적용하여 인공지능 활용 수학수업 지원시스템의 하나인 <똑똑! 수학탐험대>에 대한 초등교사 215명의 태도와 사용 의도에의 영향 요인 간 관계를 분석하였다. 주요 변수는 수학 학습에 대한 지각된 유용성, 지각된 인공지능 사용 용이성, 그리고 인공지능 활용에 대한 태도였다. 연구 결과, 수학 학습에 대한 지각된 유용성과 지각된 인공지능 사용 용이성이 교사들의 <똑똑! 수학탐험대>에 대한 긍정적인 태도에 영향을 미치고, 긍정적인 태도가 <똑똑! 수학탐험대> 사용 의도에 유의미한 영향을 미치는 것으로 나타났다. 이러한 결과는 교사가 인공지능을 활용한 수학학습의 효과와 인공지능 사용 용이성에 대해 긍정적으로 인식하도록 돕는 것이 인공지능 활용 수학수업 지원시스템을 현장에 효과적으로 도입하여 수학수업과 수학학습을 지원하는 데 핵심임을 시사한다.

웹페이지 분석을 위한 딥러닝 모델 학습과 구현에 관한 연구 (Research on Training and Implementation of Deep Learning Models for Web Page Analysis)

  • 김정환;조재원;김진산;이한진
    • 문화기술의 융합
    • /
    • 제10권2호
    • /
    • pp.517-524
    • /
    • 2024
  • 본 연구는 ChatGPT 서비스의 개시 이후 인공지능 혁명이라 일컬어지는 시대적 배경 속에서, 웹사이트의 제작과 인공지능의 융합을 위해 딥러닝 모델을 학습 및 구현하고자 한다. 딥러닝 모델은 수집한 3,000개의 웹페이지 이미지를 구성요소와 레이아웃 분류체계 기반의 데이터 가공을 통해 학습하였으며, 다음과 같은 세 가지 단계로 구분하여 진행하였다. 첫째, 인공지능 모델에 관한 선행연구를 조사하여 구현하고자 하는 모델에 가장 적합한 알고리즘을 선택하였다. 둘째, 적합한 웹페이지 및 단락 이미지를 수집하고 분류 및 가공하였다. 셋째, 딥러닝 모델을 학습시키고 서빙 인터페이스를 연동해 모델의 실제 결과를 확인하였다. 이렇게 구현된 모델은 실제 웹페이지를 구성하는 복수의 단락을 탐지하고, 단락별 규모, 요소, 특징을 분석하여 분류체계를 기반으로 의미 있는 데이터를 도출할 것이다. 이 과정은 점차 발전하여 웹페이지를 보다 정밀하게 분석할 수 있게 될 것이다. 그리고 정밀 분석기법을 역으로 설계하여, 인공지능이 완벽한 웹페이지를 자동으로 생성할 수 있는 연구의 초석이 될 것으로 기대한다.

With 코로나 시대 비대면 고독사 예방정책 방안 모색 - 대구광역시 AI, IOT 고독사 예방 사례를 중심으로 (With Corona Era, exploring policy measures to prevent non-face-to-face lonely deaths - Focusing on Daegu Metropolitan City's AI and IOT cases of lonely death prevention)

  • 김하윤;하태현
    • 디지털융복합연구
    • /
    • 제21권3호
    • /
    • pp.49-62
    • /
    • 2023
  • 사회문화적 변화와 고령화에 따른 독거노인 등의 증가로 고독사는 꾸준히 증가하고 있으며 각 지자체마다 사회적 문제로 정의하기 시작하였으며, 정부에서도 고독사 문제에 대응하기 위해 제도적 기반을 마련하는 등 고독사 예방을 위한 법적근거를 제정하기 시작하였다. 본 연구는 고독사 예방을 위한 정책방안 모색을 위하여 고독사 예방을 위한 비대면 정책 추진을 위해 대구광역시에서 추진하고 있는 스마트 디지털 정보기술(AI, IOT)을 활용한 고독사 예방정책 사례를 살펴보았다. 고독사 관련 정책은 고독사 예방사업과 발굴 후 지원사업의 두 가지 축으로 구분한다. 이들사업을 효율성 있게 운영하기 위해서는 인공지능, 사물인터넷을 통한 비대면 서비스의 제공 등이 새로운 서비스 전달체계 방식으로 인식되고 있으므로, 비대면 서비스의 중요성과 필요성이 더욱 증대되고 있다. 국가 차원의 비대면 산업 확대를 위한 시스템 구축 등 다각적인 변화와 준비가 필요한 시점이라고 할 수 있으며 향후 또 다른 국가 재난 상황에서 대응할 수 있도록 고독사 예방 등 다양한 복지정책에서 비대면 스마트돌봄체계가 확대되고 활성화되어야 할 것이다.

조건부가치측정법(CVM)을 활용한 지능형 CCTV 플랫폼의 편익 추정 연구 (A Study on Valuation of Intelligent CCTV Platforms Using Contingent Valuation Method (CVM))

  • 김태균;심동녘
    • 산업융합연구
    • /
    • 제22권7호
    • /
    • pp.1-13
    • /
    • 2024
  • 전자정부 서비스 중 지능형 CCTV 관제 플랫폼은 인공지능을 활용하여 사람, 자동차 등 주요 객체가 CCTV상에 나타났을 경우, 관제요원에게 표출해 주는 선별 관제 서비스이다. 지능형 CCTV 관제 플랫폼을 운영할 경우 비상 상황 발생 시 신속한 대처가 가능하고 민원 해결 증가로 시민들의 삶의 질 제고가 가능할 것으로 기대를 모으고 있다. 이에 본 연구는 비(非)시장재화인 지능형 CCTV 관제 플랫폼의 편익을 선택실험기법인 조건부가치측정법(CVM)을 적용하여 가구당 평균 지불의사액을 추정하고, 이를 토대로 사회적 편익을 계산하였다. 분석 결과 가구의 평균 지불의사액은 연간 6,908원, 국가 전체의 경제적 편익은 연간 약 1,504억 원으로 추정되었다. 본 연구는 그간 환경·공공재의 적용되던 CVM의 적용 범위를 지능형 전자정부 서비스 분야로 확장한 점에서 학술적 의의가 있다. 나아가, 지능형 CCTV 관제 플랫폼 도입이 활발하게 논의되는 현 상황에서, 이에 대한 편익을 화폐가치로 추정하였다는 점에서 실무적 시사점을 지닌다.

호텔 수요 예측을 위한 전역/지역 모델을 선택적으로 활용하는 시계열 예측 모델 (A Time Series Forecasting Model with the Option to Choose between Global and Clustered Local Models for Hotel Demand Forecasting)

  • 박기현;정경호;안현철
    • 한국빅데이터학회지
    • /
    • 제9권1호
    • /
    • pp.31-47
    • /
    • 2024
  • 인공지능 기술의 발전으로 인해 여행 및 호텔 산업에서도 다양한 목적의 인공지능과 기계학습 기법이 활용되고 있다. 특히 관광 산업에서는 수요 예측이 매우 중요한 요소로 인식되는데, 이는 서비스 효율성과 수익 극대화에 직접적인 영향을 미치기 때문이다. 수요 예측 시 시간에 따라 변화하는 데이터 흐름을 고려해야 하며, 이를 위해 통계적 기법과 기계학습 모델이 사용된다. 최근에는 수요 예측 데이터의 다양성과 현실의 복잡성을 반영하고자 기존 모델의 변형과 통합 연구가 진행되고 있으며, 그 결과 불확실성과 변동성에 대한 예측 성능이 향상되었음이 보고되고 있다. 본 연구에서는 기존 호텔수요 예측 연구에서 시도되지 않았던 다양한 기계학습 접근법을 통합하여 호텔 판매 수요 예측 정확도를 높이는 새로운 모델을 제안한다. 구체적으로 DTW K-means 클러스터링을 통해 지역모델을 구축하고, 전체 데이터를 활용한 전역모델과 선택적으로 결합하는 XGBoost 기반 시계열 예측 모델을 제시한다. 제안 모델은 지역과 전역 모델의 장점을 살려 호텔 수요 예측 성능을 제고할 것으로 기대된다. 이는 호텔 및 여행 산업 성장에 기여할 뿐만 아니라, 향후 다른 경영 분야 예측에도 확장 적용될 수 있을 것이다.

한국형 생성 인공지능 리터러시 척도 개발 및 타당화 (Development and Validation of a Korean Generative AI Literacy Scale)

  • 노환호;김현정;김민진
    • 지식경영연구
    • /
    • 제25권3호
    • /
    • pp.145-171
    • /
    • 2024
  • 리터러시는 작성된 문서나 가공된 정보를 사람들이 읽고 이해할 수 있는 능력으로 시작되었다. 이후 디지털 기술이 발전하면서 정보를 접하고 활용할 수 있는 분야가 넓어짐에 따라 디지털 리터러시로 확장되었다. 디지털 리터러시의 활용 분야와 목적에 따라 다양한 용어로 사용되고 있다. 본 연구에서는 인공지능 시대에 그 중요성이 점차 높아지고 있는 생성 인공지능을 대상으로 이용자의 리터러시 수준을 확인하고, 선행 연구에서 제안한 리터러시의 개념을 확장하며, 한국 이용자에게 적합한 도구를 개발하고자 연구를 수행했다. 먼저 탐색적 요인 분석 결과, 생성 인공지능 리터러시는 AI 활용 능력, 비판적 평가, 윤리적 사용, 창의적 활용의 네 가지 요인으로 구성됨을 확인하였다. 다음으로 확인적 요인 분석을 통해 생성 인공지능 리터러시를 구성하는 네 가지 요인의 모형 구조가 통계적으로 적합하다는 것을 확인했다. 더불어 기존 인공지능 리터러시 척도와 인공지능 서비스 관련 평가 도구와의 상관 분석을 통해 새로 개발된 리터러시 도구가 실제 사람들의 태도와 유의한 관계가 있음을 확인하였고, 이를 통해 타당성이 확보되었음을 알 수 있었다. 마지막으로 본 연구의 의의와 한계점, 그리고 향후 연구 방향에 대해 논했다.

뇌심혈관 질환과 업무 환경의 연관성 판단을 위한 AI 모델의 개발 및 전문가 판단과의 일치도 분석 (Development of an AI Model to Determine the Relationship between Cerebrovascular Disease and the Work Environment as well as Analysis of Consistency with Expert Judgment)

  • 오주연;유기봉;진익훈;윤병윤;심주호;박희주;이종민;이지안;윤진하
    • 한국산업보건학회지
    • /
    • 제34권3호
    • /
    • pp.202-213
    • /
    • 2024
  • Introduction: Acknowledging the global issue of diseases potentially caused by overwork, this study aims to develop an AI model to help workers understand the connection between cerebrocardiovascular diseases and their work environment. Materials and methods: The model was trained using medical and legal expertise along with data from the 2021 occupational disease adjudication certificate by the Industrial Accident Compensation Insurance and Prevention Service. The Polyglot-ko-5.8B model, which is effective for processing Korean, was utilized. Model performance was evaluated through accuracy, precision, sensitivity, and F1-score metrics. Results: The model trained on a comprehensive dataset, including expert knowledge and actual case data, outperformed the others with respective accuracy, precision, sensitivity, and F1-scores of 0.91, 0.89, 0.84, and 0.87. However, it still had limitations in responding to certain scenarios. Discussion: The comprehensive model proved most effective in diagnosing work-related cerebrocardiovascular diseases, highlighting the significance of integrating actual case data in AI model development. Despite its efficacy, the model showed limitations in handling diverse cases and offering health management solutions. Conclusion: The study succeeded in creating an AI model to discern the link between work factors and cerebrocardiovascular diseases, showcasing the highest efficacy with the comprehensively trained model. Future enhancements towards a template-based approach and the development of a user-friendly chatbot webUI for workers are recommended to address the model's current limitations.

고객 맞춤형 서비스를 위한 관객 행동 기반 감정예측모형 (The Audience Behavior-based Emotion Prediction Model for Personalized Service)

  • 유은정;안현철;김재경
    • 지능정보연구
    • /
    • 제19권2호
    • /
    • pp.73-85
    • /
    • 2013
  • 정보기술의 비약적 발전에 힘입어, 오늘날 기업들은 지금까지 축적한 고객 데이터를 기반으로 맞춤형 서비스를 제공하는 것에 많은 관심을 가지고 있다. 고객에게 소구하는 맞춤형 서비스를 효과적으로 제공하기 위해서는 우선 그 고객이 처한 상태나 상황을 정확하게 인지하는 것이 중요하다. 특히, 고객에게 서비스가 전달되는 이른바 진실의 순간에 해당 고객의 감정 상태를 정확히 인지할 수 있다면, 기업은 더 양질의 맞춤형 서비스를 제공할 수 있을 것이다. 이와 관련하여 사람의 얼굴과 행동을 이용하여 사람의 감정을 판단하고 개인화 서비스를 제공하기 위한 연구가 활발하게 이루어지고 있다. 얼굴 표정을 통해 사람의 감정을 판단하는 연구는 좀 더 미세하고 확실한 변화를 통해 정확하게 감정을 판단할 수 있지만, 장비와 환경의 제약으로 실제 환경에서 다수의 관객을 대상으로 사용하기에는 다소 어려움이 있다. 이에 본 연구에서는 Plutchik의 감정 분류 체계를 기반으로 사람들의 행동을 통해 감정을 추론해내는 모형을 개발하는 것을 목표로 한다. 본 연구는 콘텐츠에 의해 유발된 사람들의 감정적인 변화를 사람들의 행동 변화를 통해 판단하고 예측하는 모형을 개발하고, 4가지 감정 별 행동 특징을 추출하여 각 감정에 따라 최적화된 예측 모형을 구축하는 것을 목표로 한다. 모형 구축을 위해 사람들에게 적절한 감정 자극영상을 제공하고 그 신체 반응을 수집하였으며, 사람들의 신체 영역을 나누었다. 특히, 모션캡쳐 분야에서 널리 쓰이는 차영상 기법을 적용하여 사람들의 제스쳐를 추출 및 보정하였다. 이후 전처리 과정을 통해 데이터의 타임프레임 셋을 20, 30, 40 프레임의 3가지로 설정하고, 데이터를 학습용, 테스트용, 검증용으로 구분하여 인공신경망 모형을 통해 학습시키고 성과를 평가하였다. 다수의 일반인들을 대상으로 수집된 데이터를 이용하여 제안 모형을 구축하고 평가한 결과, 프레임셋에 따라 예측 성과가 변화함을 알 수 있었다. 감정 별 최적 예측 성과를 보이는 프레임을 확인할 수 있었는데, 이는 감정에 따라 감정의 표출 시간이 다르기 때문인 것으로 판단된다. 이는 행동에 기반한 제안된 감정예측모형이 감정에 따라 효과적으로 감정을 예측할 수 있으며, 실제 서비스 환경에서 사용할 수 있는 효과적인 알고리즘이 될 수 있을 것으로 기대할 수 있다.