DOI QR코드

DOI QR Code

A Study on Valuation of Intelligent CCTV Platforms Using Contingent Valuation Method (CVM)

조건부가치측정법(CVM)을 활용한 지능형 CCTV 플랫폼의 편익 추정 연구

  • Tae-Kyun Kim (Dept. of Advanced Industry Fusion, Konkuk University) ;
  • Dongnyok Shim (Dept. of Advanced Industry Fusion, Konkuk University)
  • 김태균 (건국대학교 신산업융합학과) ;
  • 심동녘 (건국대학교 신산업융합학과)
  • Received : 2024.04.25
  • Accepted : 2024.07.20
  • Published : 2024.07.28

Abstract

Among e-government services, the intelligent CCTV control platform is a screening control service that utilizes artificial intelligence to display major objects such as people, cars, etc. to control personnel when they appear on CCTV. The operation of an intelligent CCTV control platform is expected to improve the quality of life of citizens by enabling rapid response in the event of an emergency and increasing the resolution of complaints. In this study, the benefits of the intelligent CCTV control platform, a non-market good, were estimated by applying the contingent valuation method (CVM), a choice experiment technique, to estimate the average willingness to pay per household and calculate the social benefits. As a result of the analysis, the average willingness to pay per household was estimated to be KRW 6,908 per year, and the economic benefits for the country as a whole were estimated to be about KRW 150.4 billion per year. This study is of academic significance as it extends the application of CVM to the field of intelligent e-Government services. The Intelligent CCTV control platforms is being actively discussed, this study has practical implications in that the benefits were estimated in monetary value.

전자정부 서비스 중 지능형 CCTV 관제 플랫폼은 인공지능을 활용하여 사람, 자동차 등 주요 객체가 CCTV상에 나타났을 경우, 관제요원에게 표출해 주는 선별 관제 서비스이다. 지능형 CCTV 관제 플랫폼을 운영할 경우 비상 상황 발생 시 신속한 대처가 가능하고 민원 해결 증가로 시민들의 삶의 질 제고가 가능할 것으로 기대를 모으고 있다. 이에 본 연구는 비(非)시장재화인 지능형 CCTV 관제 플랫폼의 편익을 선택실험기법인 조건부가치측정법(CVM)을 적용하여 가구당 평균 지불의사액을 추정하고, 이를 토대로 사회적 편익을 계산하였다. 분석 결과 가구의 평균 지불의사액은 연간 6,908원, 국가 전체의 경제적 편익은 연간 약 1,504억 원으로 추정되었다. 본 연구는 그간 환경·공공재의 적용되던 CVM의 적용 범위를 지능형 전자정부 서비스 분야로 확장한 점에서 학술적 의의가 있다. 나아가, 지능형 CCTV 관제 플랫폼 도입이 활발하게 논의되는 현 상황에서, 이에 대한 편익을 화폐가치로 추정하였다는 점에서 실무적 시사점을 지닌다.

Keywords

References

  1. M.K. Choi & J.M Choi. (2019). CCTV Integrated Control Center Operation Status and Improvement Plan. NARS Legislative & Policy Reports. 29.
  2. J.K. Lee & U. Hwang. (2010). Estimating Public Policy Effects for the Rational Management of Public Finance - On a Causes of the Hypothetical Bias in CVM and a way to Solve the Bias, The Journal of Korean Public Policy, 137-170
  3. J.D. Lee, W.J. Park & S.M. Kang (2009). A Study on Framework for IT Investment in the Public Sector. Korea Journal of Information Society, 16(2), 947-948
  4. D.N. Shim & J.H. Yoo. (2017). Software and Social Problem Solving: How to Promote Public-Private Partnership SW Projects. SPRi Insight Report, 2017-005.
  5. BUREAU OF EUROPEAN POLICY ADVISERS (BEPA). (2009). Social innovation as part of the Europe 2020 strategy. Brussels.
  6. S.T. Kim. (2003). E-Government Theory and Strategy. Seoul : Bobmunsa
  7. M.J. Ahan. (2008). Korean e-government theory. Seoul : Pakyoungsa
  8. S.E. Han. (2009) A Study on Informatization Policy in Korea: Policy Change and Prospect. National Policy Research, 23(2), 5-34.
  9. S. Zouridis & M. Thaens. (2003). E-government: towards a public administration approach. Asian journal of public administration, 25(2), 159-183. https://doi.org/10.1080/02598272.2003.10800413
  10. H.R. Yoo. (2003). Research on the efficient administration of e-government. Journal of Korea Policy Research, 3(2), 95-114.
  11. H.J. Song. (2002), Prospects and limitations of the e-government initiative in Korea. International Review of Public Administration, 7(2), 45-53. https://doi.org/10.1080/12294659.2002.10805005
  12. T.Y. Park & J.Y. Kim. (2014), The capabilities required for being successful in complex product systems: case study of Korean e-government. Asian Journal of Technology Innovation, 22(2), 268-285.
  13. K.M. Park. (2019). Evolution of e-Government if the Age of 4th industrial revolution. Monthly Software Oriented Society, 2019(09).
  14. H.W. Kwon, H.J Kim & Y.C. You. (2015). Limitations of the Provider Input-Oriented Approach in the Mature Stage of E-Government and Suggested Measures: Cases of the E-Government Standard Framework and Their Implications. Journal of Korean Association for Regional Information Society, 18(3), 155-181. DOI : 10.22896/karis.2015.18.3.006
  15. S.G. Lee, H.G Lee & N.R. Yoo. (2021). Influence of COVID-19 Risk Communication on Trust in Government: Exploring moderating effect of e-government capacity. The journal of convergence society and public policy, 14(4), 271-305. DOI : 10.37582/CSPP.2021.14.4.271
  16. D.N. Shim. (2020). Thing to Do to Solve the Social problem Using SW Technologies. Monthly Software Oriented Society, 2020(03).
  17. H.B. Yoo & T.J Lah. (2021). A Study on the Effect of the Perception of the Fourth Industrial Technology on the Acceptance: Focusing on the Technology Acceptance Model and Government trust. The journal of convergence society and public policy, 14(4), 331-362. DOI: 10.37582/CSPP.2021.14.4.331
  18. J.H. Yoo, S.H. Kang & J.Y. Kim. (2015). A new paradigm for public SW: From build to use. SPRi Insight Report, 2015-010.
  19. K. Kim. (2022). Empirical research on measurement models for digital government: Focusing on the OECD's model. Korean Public Management Review, 36(2), 103-129.
  20. M.K. Han & H.H. Park. (2018). The practice of CCTV surveillance for crime prevention: Budgeting and placing open-street cameras in Korea. Korean Institute of Criminology, 1-366
  21. S. Fleck & W. Strasser. (2010). Privacy sensitive surveillance for assisted living-a smart camera approach, In Handbook of Ambient Intelligence and Smart Environments, Boston. MA: Springer, 985-1014.
  22. T.W. Jang, Y.T. Shin & J.B. Kim. (2013). A Study on the Object Extraction and Tracking System for Intelligent Surveillance. The Journal of Korean Institute of Communication and Information Sciences, 38(7), 589-595. https://dx-doi-org.proxy.konkuk.ac.kr/10.7840/kics.2013.38B.7.589
  23. H.R. Lee, Y.J. Kim, M.A. Lee & J.H. Moon. (2020). Danger Alert Surveillance Camera Service using AI Image Recognition technology. Proceedings of the Korean Society for Information Processing, 27(2), 814-817.
  24. S.W. Park, S.H. Oh, S.W. Park, K.S. Lim, B.S. Choi, S.H. Park, S.W. Ghyme, S.W. Han, J.W. Han & G.W. Kim. (2019). Trends in Dynamic Crime Prediction Technologies based on Intelligent CCTV. [ETRI] Electronic Communications Trends Analysis, 35(2), 17-27.
  25. D.H. Lim & D.W. Park. (2023). Artificial Intelligence Acquisition and Response of Disaster Information Using Smart City High-Rise Wide-Angle CCTV. The Journal of Korean Institute of Communication and Information Sciences, 46(11), 2023-2030.
  26. J.S. Kim, S.M. Park, C.H. Hong, S.H. Park & J.W. Lee. (2022). Development of AI Detection Model based on CCTV Image for Underground Utility Tunnel. Journal of the Society of Disaster Information, 18(2), 364-373. https://doi.org/10.15683/KOSDI.2022.6.30.364
  27. S.T. Lha, S.J. Oh, T.Y. Lee, J.H. Oh, I.Y. Shin & S.H. Lee. (2023). Development of loitering and intrusion algorithm for intelligent CCTV. Proceedings of the 2023 Summer Annual Conference of IEIE, 1606-1609.
  28. W. C. Choi & J. Y. Na. (2018). Evaluating economic values of intelligent security services based on spatial information in South Korea. Spatial Information Research, 26, 347-356. https://doi.org/10.1007/s41324-018-0180-4
  29. W.C. Choi & J.Y. Na. (2019). Economic Value Estimation of Intelligent Crime-Zero Testbed. Journal of Korea Academia-Industrial cooperation Society, 20(11), 436-445. DOI : 10.5762/KAIS.2019.20.11.436
  30. T.W. Kim, J.A. Jang & G.S. Jeon. (2023). Estimation of the Value of Smart Pole Using Contingent Valuation Method. Korean Society of Transportation, 41(2), 198-211. DOI : 10.7470/jkst.2023.41.2.198
  31. H.C. Shim & J.H. Kim. (2023). A Study on the Estimation of Economic Value of Smart City Construction Project through Contingent Valuation Method (CVM). Journal of The Residential Environment Institute of Korea, 21(59), 67-76. https://doi.org/10.22313/reik.2023.21.1.67
  32. Y.H. Kim, S.E. Lim & J.I. Choi. (2016). Estimation of Willingness to Pay for Smart Home Service by Contingent Valuation Method. Journal of Korean Society for Quality Management, 44(4), 833-843. DOI : 10.7469/JKSQM.2016.44.4.833
  33. Y.S. Cho, Y.M. Koo, J.S. Lee & J.W. Lee. (2011). Economic Benefit Analysis of Urban Meteorological Information Service Using Contingent Valuation Method. Environmental and Resource Economics Review, 20(4), 643-662.
  34. S.K. Byun. (2014). Estimating the Benefits of the Broadcasting in Disaster Situations. Korea Association for Telecommunications Policies, 21(1), 59-84.
  35. Y.M. Jun & M.S. Do. (2023). Calculation of willingness to pay for MaaS (Mobility as a Service) using the contingent value measurement method (CVM) : Regional Policy Review, 34(1), 185-202. DOI : 10.22773/RPR.2023.34.1.185
  36. S.R. Kim. (2021). Perceptions toward Job Changes due to 4th Industrial Revolution. The Journal of the Korea Contents Association, 21(11), 528-542. DOI : 10.5392/JKCA.2021.21.11.528
  37. D.J. Jeong, S.M. Moon & S.M. Choi. (2020). A Study on the Effect of Perception on Technology Acceptance Attitudes : Focusing on the Moderating Effect of Government Capacity. RGI Review, 22(2), 225-251.
  38. H.J. Eom & M.J. Lee. (2020). A Study on Labor Market Changes from Artificial Intelligence (AI) in the Intelligence Information Society. Information Society & Media, 21(2), 1-20. DOI : 10.52558/ISM.2020.08.21.2.1