• 제목/요약/키워드: artificial immune systems

검색결과 57건 처리시간 0.034초

새로운 최적화 기법 소개 : 인공면역시스템 (Introduction to a Novel Optimization Method : Artificial Immune Systems)

  • 양병학
    • 산업공학
    • /
    • 제20권4호
    • /
    • pp.458-468
    • /
    • 2007
  • Artificial immune systems (AIS) are one of natural computing inspired by the natural immune system. The fault detection, the pattern recognition, the system control and the optimization are major application area of artificial immune systems. This paper gives a concept of artificial immune systems and useful techniques as like the clonal selection, the immune network theory and the negative selection. A concise survey on the optimization problem based on artificial immune systems is generated. The overall performance of artificial immune systems for the optimization problem is discussed.

Optimization of Distributed Autonomous Robotic Systems Based on Artificial Immune Systems

  • Hwang, Chul-Min;Park, Chang-Hyun;Sim, Kwee-Bo
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.220-223
    • /
    • 2003
  • In this paper, we optimize distributed autonomous robotic system based on artificial immune system. Immune system has B-cell and T-cell that are two major types of lymphocytes. B-cells take part in humoral responses that secrete antibodies and T-cells take part in cellular responses that stimulate or suppress cells connected to the immune system. They have communicating network equation, which have many parameters. The distributed autonomous robotics system based on this artificial immune system is modeled on the B-cells and T-cells system. So performance of system is influenced by parameters of immune network equation. We can improve performance of Distributed autonomous robotics system based on artificial immune system.

  • PDF

인공면역망에 의한 자율이동로봇의 행동 선택 (Action Selections for an Autonomous Mobile Robot by Artificial Immune Network)

  • 한상현;윤중선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.532-532
    • /
    • 2000
  • Conventional artificial intelligence systems are not properly responding under dynamically changing environments. To overcome this problem, reactive planning systems implementing new Al principles, called behavior-based Al or emergent computation, have been proposed and confirmed their usefulness. As another alternative, biological information processing systems may provide many feasible ideas to these problems. Immune system, among these systems, plays important roles to maintain its own system against dynamically changing environments. Therefore, immune system would provide a new paradigm suitable for dynamic problem dealing with unknown environments. In this paper, a new approach to behavior-based Al by paying attention to biological immune system is investigated. The feasibility of this method is confirmed by applying to behavior control of an autonomous mobile robot in cluttered environment.

  • PDF

A New Artificial Immune Approach to Hardware Test Based on the Principle of Antibody Diversity

  • Lee, Sanghyung;Kim, Euntai;Park, Mignon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제3권1호
    • /
    • pp.23-26
    • /
    • 2003
  • This paper proposes a new artificial immune approach to hardware test. A novel algorithm of generating tolerance conditions is suggested based on the principle of the antibody diversity. Tolerance conditions in artificial immune system correspond to the antibody in biological immune system. The suggested method is applied to the on-line monitoring of a typical FSM (a decade counter) and its effectiveness is demonstrated by the computer simulation.

인공 면역망과 인터넷에 의한 자율이동로봇 시스템 설계 (Design of Autonomous Mobile Robot System Based on Artificial Immune Network and Internet)

  • 이동제;이민중;최영규
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권11호
    • /
    • pp.522-531
    • /
    • 2001
  • Recently conventional artificial intelligence(AI) approaches have been employed to build action selectors for the autonomous mobile robot(AMR). However, in these approaches, the decision making process to choose an action from multiple competence modules is still an open question. Many researches have been focused on the reactive planning systems such as the biological immune system. In this paper, we attempt to construct an action selector for an AMR based on the artificial immune network and internet. The information from vision sensors is used for antibody. We propose a learning method for artificial immune network using evolutionary algorithm to produce antibody automatically. The internet environment for an AMR action selector shows the usefulness of the proposed learning artificial immune network application.

  • PDF

인공 면역계 기반 자율분산로봇 시스템의 협조 전략과 군행동 (Cooperative Strategies and Swarm Behavior in Distributed Autonomous Robotic Systems Based on Artificial Immune System)

  • 심귀보;이동욱;선상준
    • 제어로봇시스템학회논문지
    • /
    • 제6권12호
    • /
    • pp.1079-1085
    • /
    • 2000
  • In this paper, we propose a method of cooperative control (T-cell modeling) and selection of group behavior strategy (B-cell modeling) based on immune system in distributed autonomous robotic system (DARS). An immune system is the living bodys self-protection and self-maintenance system. these features can be applied to decision making of the optimal swarm behavior in a dynamically changing environment. For applying immune system to DARS, a robot is regarded as a B-cell, each environmental condition as an antigen, a behavior strategy as an antibody, and control parameter as a T-cell, respectively. When the environmental condition (antigen) changes, a robot selects an appropriate behavior strategy (antibody). And its behavior strategy is stimulated and suppressed by other robots using communication (immune network). Finally, much stimulated strategy is adopted as a swarm behavior strategy. This control scheme is based on clonal selection and immune network hypothesis, and it is used for decision making of the optimal swarm strategy. Adaptation ability of the robot is enhanced by adding T-cell model as a control parameter in dynamic environments.

  • PDF

A Feasibility Study on Application of Immune Network for Intelligent Controller of a Multivariable System

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.115.5-115
    • /
    • 2001
  • This paper suggests that the immune algorithm can effectively be used in tuning of a multivariable system. Then artificial immune network always has a new paraller decentralized processing mechanism for various situations, since antibodies communication to each other among different species of antibodies/B-cells through the simulation and suppression chains among antibodies that form a large-scaled network. In addition to that, the structure of the network is not fixed, but varies continuously. That is, the artificial immune network flexibly self-organizes according to dynamic changes of external environment (meta-dynamics function). However, up to the present time, models based on the conventional crisp approach ...

  • PDF

PSO를 이용한 인공면역계 기반 자율분산로봇시스템의 군 제어 (Swarm Control of Distributed Autonomous Robot System based on Artificial Immune System using PSO)

  • 김준엽;고광은;박승민;심귀보
    • 제어로봇시스템학회논문지
    • /
    • 제18권5호
    • /
    • pp.465-470
    • /
    • 2012
  • This paper proposes a distributed autonomous control method of swarm robot behavior strategy based on artificial immune system and an optimization strategy for artificial immune system. The behavior strategies of swarm robot in the system are depend on the task distribution in environment and we have to consider the dynamics of the system environment. In this paper, the behavior strategies divided into dispersion and aggregation. For applying to artificial immune system, an individual of swarm is regarded as a B-cell, each task distribution in environment as an antigen, a behavior strategy as an antibody and control parameter as a T-cell respectively. The executing process of proposed method is as follows: When the environmental condition changes, the agent selects an appropriate behavior strategy. And its behavior strategy is stimulated and suppressed by other agent using communication. Finally much stimulated strategy is adopted as a swarm behavior strategy. In order to decide more accurately select the behavior strategy, the optimized parameter learning procedure that is represented by stimulus function of antigen to antibody in artificial immune system is required. In this paper, particle swarm optimization algorithm is applied to this learning procedure. The proposed method shows more adaptive and robustness results than the existing system at the viewpoint that the swarm robots learning and adaptation degree associated with the changing of tasks.

Intrusion Detection Algorithm based on Artificial Immune System

  • Yang, Jae-Won;Sim, Kwee-Bo;Lee, Dong-Wook;Seo, Dong-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.35.4-35
    • /
    • 2002
  • $\textbullet$ Intrusion Detection Algorithm based on Artificial Immune System 1. Introduction 2. Research Background 3. The adaptation algorithm of SYN flooding attack 4. SIMULATION 5. Conclusion 6. References

  • PDF

A Navigation Algorithm for Autonomous Mobile Robots Using Artificial Immune Networks and Neural Networks

  • Kim, Insic;Lee, Minjung;Park, Youngkiu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.106.5-106
    • /
    • 2002
  • 1. Introduction 2. Artificial Immune Networks and Navigation Algorithm 3. Obstacle Avoidance and Goal Approach Behavior 4. Weights Adjustment Using Neural Network 5. Velocity Control and Local Minimum Avoidance 6. Simulation 7. Conclusion

  • PDF