• 제목/요약/키워드: artificial force

검색결과 384건 처리시간 0.023초

인공신경망을 이용한 드레이프성 예측 (Prediction of Fabric Drape Using Artificial Neural Networks)

  • 이소민;유동주;신보나;윤선영;심명희;윤창상
    • 한국의류학회지
    • /
    • 제45권6호
    • /
    • pp.978-985
    • /
    • 2021
  • This study aims to propose a prediction model for the drape coefficient using artificial neural networks and to analyze the nonlinear relationship between the drape properties and physical properties of fabrics. The study validates the significance of each factor affecting the fabric drape through multiple linear regression analysis with a sample size of 573. The analysis constructs a model with an adjusted R2 of 77.6%. Seven main factors affect the drape coefficient: Grammage, extruded length values for warp and weft (mwarp, mweft), coefficients of quadratic terms in the tensile-force quadratic graph in the warp, weft, and bias directions (cwarp, cweft, cbias), and force required for 1% tension in the warp direction (fwarp). Finally, an artificial neural network was created using seven selected factors. The performance was examined by increasing the number of hidden neurons, and the most suitable number of hidden neurons was found to be 8. The mean squared error was .052, and the correlation coefficient was .863, confirming a satisfactory model. The developed artificial neural network model can be used for engineering and high-quality clothing design. It is expected to provide essential data for clothing appearance, such as the fabric drape.

Prediction of acceleration and impact force values of a reinforced concrete slab

  • Erdem, R. Tugrul
    • Computers and Concrete
    • /
    • 제14권5호
    • /
    • pp.563-575
    • /
    • 2014
  • Concrete which is a composite material is frequently used in construction works. Properties and behavior of concrete are significant under the effect of different loading cases. Impact loading which is a sudden dynamic one may have destructive effects on structures. Testing apparatuses are designed to investigate the impact effect on test members. Artificial Neural Network (ANN) is a computational model that is inspired by the structure or functional aspects of biological neural networks. It can be defined as an emulation of biological neural system. In this study, impact parameters as acceleration and impact force values of a reinforced concrete slab are obtained by using a testing apparatus and essential test devices. Afterwards, ANN analysis which is used to model different physical dynamic processes depending on several variables is performed in the numerical part of the study. Finally, test and predicted results are compared and it's seen that ANN analysis is an alternative way to predict the results successfully.

고속가공에서 2중 신경망을 이용한 표면거칠기 예측과 가공DB 구축 효율화 방안 (Prediction of Surface Roughness using double ANN and the Efficient Machining Database Building Scheme in High Speed Machining)

  • 원종률;남성호;유송민;이석우;최헌종
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.411-415
    • /
    • 2004
  • In this paper, a double artificial neural network (ANN) approach and the efficient machining database building scheme are presented for the prediction of surface roughness in high-speed machining. In this approach, 4 machining parameters and used for the prediction of cutting force components, and the combinations of 4 parameters and the predicted cutting force components are finally used for the prediction of surface roughness. The experimental results comparing the these results with the predicted values using simple 4 input nodes have been also investigated to verify the effectiveness of the proposed approach.

  • PDF

시뮬레이션을 이용한 이동 로봇의 충돌회피 알고리즘 비교 (Comparison of Collision Avoidance Algorithm for a Mobile Robot using a Simulation)

  • 김광진;고낙용;박세승
    • 한국전자통신학회논문지
    • /
    • 제7권1호
    • /
    • pp.187-194
    • /
    • 2012
  • 본 논문에서는 이동 로봇이 자율주행을 하기 위해 사용되는 충돌회피 알고리즘을 실제 로봇과 똑같은 환경에 적용된 시뮬레이터를 통해 성능을 알아본다. 이동 로봇의 충돌회피를 위해 기존에 인공전위계 알고리즘과 Elastic force 알고리즘 등이 제안되어져있다. 본 연구에서는 시뮬레이션을 통해 이 두 가지 방법에 의한 동작시간과 경로의 이동 길이를 비교하였다. 시뮬레이터는 IPC(Inter Process Communication)를 기반으로 개발되어졌으며, 알고리즘의 비교에는 차륜형 이동 로봇을 사용하였다.

Comparative Study on Surrogate Modeling Methods for Rapid Electromagnetic Forming Analysis

  • Lee, Seungmin;Kang, Beom-Soo;Lee, Kyunghoon
    • 소성∙가공
    • /
    • 제27권1호
    • /
    • pp.28-36
    • /
    • 2018
  • Electromagnetic forming is a type of high-speed forming process to deform a workpiece through a Lorentz force. As the high strain rate in an electromagnetic-forming simulation causes infeasibility in determining constitutive parameters, we employed inverse parameter estimation in the previous study. However, the inverse parameter estimation process required us to spend considerable time, which leads to an increase in computational cost. To overcome the computational obstacle, in this research, we applied two types of surrogate modeling methods and compared them to each other to evaluate which model is best for the electromagnetic-forming simulation. We exploited an artificial neural network and we reduced-order modeling methods. During the construction of a reduced-order model, we extracted orthogonal bases with proper orthogonal decomposition and predicted basis coefficients by utilizing an artificial neural network. After the construction of the surrogate models, we verified the artificial neural network and reduced-order models through training and testing samples. As a result, we determined the artificial neural network model is slightly more accurate than the reduced-order model. However, the construction of the artificial neural network model requires a considerably larger amount of time than that of the reduced-order model. Thus, a reduced order modeling method is more efficient than an artificial neural network for estimating the electromagnetic forming and for the rapid approximation of structural simulations which needs repetitive runs.

원주 TIG 용접에서 이면 비드 형상 제어를 위한 Filter Wire 송급힘과 용접자세의 상관관계에 대한 연구 (A study on the mapping between the feeding force of filter wire and welding position for the control of back bead shape in orbital TIG welding)

  • 강선호;조형석;장희석;우승엽
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.792-795
    • /
    • 1996
  • In TIG welding of pipe, back bead size monitoring is important for weld quality assurance. Many researches have been performed on estimation of the back bead size by heat conduction analysis. However numerical conduction model based on many uncertain thermal parameters causes remarkable errors and thermomechanical phenomena in molten pool can not be considered. In this paper, filler wire feeding force in addition to weld current, wire feedrate, torch travel speed and orbital position angle is monitored to estimate back bead size in orbital TIG welding. Monitored welding process variables are fed into an artificial neural network estimator which has been trained with the monitored process variables (input patterns) and actual back bead size (output patterns). Experimental verification of the proposed estimation method was performed. The predicted results are in a good agreement with the actual back bead shape. The results are quite promising in that estimation of invisible back bead shape can be achieved by analyzing the welding parameters without any conventional NDT of welds.

  • PDF

EPB-TBM performance prediction using statistical and neural intelligence methods

  • Ghodrat Barzegari;Esmaeil Sedghi;Ata Allah Nadiri
    • Geomechanics and Engineering
    • /
    • 제37권3호
    • /
    • pp.197-211
    • /
    • 2024
  • This research studies the effect of geotechnical factors on EPB-TBM performance parameters. The modeling was performed using simple and multivariate linear regression methods, artificial neural networks (ANNs), and Sugeno fuzzy logic (SFL) algorithm. In ANN, 80% of the data were randomly allocated to training and 20% to network testing. Meanwhile, in the SFL algorithm, 75% of the data were used for training and 25% for testing. The coefficient of determination (R2) obtained between the observed and estimated values in this model for the thrust force and cutterhead torque was 0.19 and 0.52, respectively. The results showed that the SFL outperformed the other models in predicting the target parameters. In this method, the R2 obtained between observed and predicted values for thrust force and cutterhead torque is 0.73 and 0.63, respectively. The sensitivity analysis results show that the internal friction angle (φ) and standard penetration number (SPT) have the greatest impact on thrust force. Also, earth pressure and overburden thickness have the highest effect on cutterhead torque.

On-line 학습 신경회로망을 이용한 열간 압연하중 예측 (Prediction for Rolling Force in Hot-rolling Mill Using On-line learning Neural Network)

  • 손준식;이덕만;김일수;최승갑
    • 한국공작기계학회논문집
    • /
    • 제14권1호
    • /
    • pp.52-57
    • /
    • 2005
  • In the foe of global competition, the requirements for the continuously increasing productivity, flexibility and quality(dimensional accuracy, mechanical properties and surface properties) have imposed a mai or change on steel manufacturing industries. Indeed, one of the keys to achieve this goal is the automation of the steel-making process using AI(Artificial Intelligence) techniques. The automation of hot rolling process requires the developments of several mathematical models for simulation and quantitative description of the industrial operations involved. In this paper, an on-line training neural network for both long-term teaming and short-term teaming was developed in order to improve the prediction of rolling force in hot rolling mill. This analysis shows that the predicted rolling force is very closed to the actual rolling force, and the thickness error of the strip is considerably reduced.

On-line 학습 신경회로망을 이용한 열간 압연하중 예측 (Prediction for Rolling Force in Hot-rolling Mill Using On-line loaming Neural Network)

  • 손준식;이덕만;김일수;최승갑
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.124-129
    • /
    • 2003
  • In the face of global competitor the requirements flor the continuously increasing productivity, flexibility and quality(dimensional accuracy, mechanical properties and surface properties) have imposed a major change on steel manufacturing industries. Indeed, one of the keys to achieve this goal is the automation of the steel-making process using AI(Artificial Intelligence) techniques. The automation of hot rolling process requires the developments of several mathematical models fir simulation and quantitative description of the industrial operations involved. In this paper, a on-line training neural network for both long-term teaming and short-term teaming was developed in order to improve the prediction of rolling force in hot rolling mill. This analysis shows that the predicted rolling force is very closed to the actual rolling force, and the thickness error of the strip is considerably reduced.

  • PDF

부품조립 및 핸들링을 위한 말단효과장치의 정밀 그리핑 제어에 관한 연구 (A study on Precise Grasping Control of End-Effector for Parts Assembling and Handling)

  • 하언태;성기원;강언욱
    • 한국산업융합학회 논문집
    • /
    • 제18권3호
    • /
    • pp.173-180
    • /
    • 2015
  • In this paper, we propose a new precise control technology of robotic gripper for assembling and handling of part. When a robot manipulator interacts mechanically with its environment to perform tasks such as assembly or edge-finishing, the end-effector is thereby constrained by the environment. Therefore grasping force control is very important, since it increases safety due to monitoring of contact force. A comparison of various force control architecture is reported. Different force control methods can often be configured to achieve similar results for a given task, and the choice of control algorithm depends strongly on the application or on the characteristics of a particular robot. In the research, the adjustable gripping force can be controlled and improved the accuracy using the artificial intelligence techniques.