• Title/Summary/Keyword: artificial force

Search Result 387, Processing Time 0.022 seconds

Precise Control Law Design of Robot Finger Embedding Distributed Actuation Mechanism (분산 구동 메커니즘을 내장한 로봇 핑거의 정밀 자세 제어기 설계)

  • Shin, Young-June;Kim, Kyung-Soo;Kim, Soo-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.9
    • /
    • pp.846-851
    • /
    • 2010
  • In this paper, we newly propose a novel control strategy of a three joints-robot finger for the purpose of artificial hands. The robot finger is specifically modeled by using a 3D CAD program (CATIA), considering human fingers, and then the proposed control method is verified through the dynamic simulation tool (Simulink and Recurdyn R2). Each slider is individually controlled to be located at the optimal positions where the maximal joint torque can be generated. To prove the effectiveness of the proposed control method, we devise two cases for the reference position of sliders. By comparing the control performance of two cases, the validity of the proposed control method will be verified.

다중센서를 이용한 로봇 손의 파지 제어

  • 이양희;서동수;박민용;이종원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.694-697
    • /
    • 1996
  • The aim of this work for 5 years from 1994 is to develop a multi-fingered robot hand and its control system for grasp and manipulation of objects dexterously. Since the robot hand is still being developed, a commercialized robot hand from Barrett Company is utilized to implement a hand controller and control algorithm. For this, VME based motion control and interface boards are developed and multi-sensors such as encoder, force/torque sensor, dynamic sensor and artificial skin sensor are partly developed and employed for the grasping control algorithm. In oder to handle uncertainties such as mechanical idleness and backlash, a fuzzy rule based grasping algorithm is also considered and tested with the developed control system.

  • PDF

A study on the development of the brushless DC motor control system for an artificial heart using back-EMF (역기전력을 이용한 인공심장구동용 브러시리스 직류전동기의 제어에 관한 연구)

  • 김진태;김종원;이상훈;김희찬;민병구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.706-710
    • /
    • 1988
  • Using back electro-motive force(EMF) signals of a brushless DC motor, the sensorless micro-processor controlled drive system was developed. In this new commutation method, the manual pulses are used for relatively short accelerating phase and then the exact commutational positions are detected based upon the back emf signals. The hardware and software implementations with the experiment to compare the performance of the developed system with the, conventional system using hall effect sensors are included. By reducing the number of the required sensors in the artificial heart control system, the total reliability will be incresed.

  • PDF

Predicting the Human Multi-Joint Stiffness by Utilizing EMG and ANN (인공신경망과 근전도를 이용한 인간의 관절 강성 예측)

  • Kang, Byung-Duk;Kim, Byung-Chan;Park, Shin-Suk;Kim, Hyun-Kyu
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.1
    • /
    • pp.9-15
    • /
    • 2008
  • Unlike robotic systems, humans excel at a variety of tasks by utilizing their intrinsic impedance, force sensation, and tactile contact clues. By examining human strategy in arm impedance control, we may be able to teach robotic manipulators human''s superior motor skills in contact tasks. This paper develops a novel method for estimating and predicting the human joint impedance using the electromyogram(EMG) signals and limb position measurements. The EMG signal is the summation of MUAPs (motor unit action potentials). Determination of the relationship between the EMG signals and joint stiffness is difficult, due to irregularities and uncertainties of the EMG signals. In this research, an artificial neural network(ANN) model was developed to model the relation between the EMG and joint stiffness. The proposed method estimates and predicts the multi joint stiffness without complex calculation and specialized apparatus. The feasibility of the developed model was confirmed by experiments and simulations.

  • PDF

Development of Intelligent Monitoring System for Welding Process Faults Detection in Auto Body Assembly (자동차 차체 제조 공정에서 용접 공정 오류 검출을 위한 지능형 모니터링 시스템 개발)

  • Kim, Tae-Hyung;Yu, Ji-Young;Rhee, Se-Hun;Park, Young-Whan
    • Journal of Welding and Joining
    • /
    • v.28 no.4
    • /
    • pp.81-86
    • /
    • 2010
  • In resistance spot welding, regardless of the optimal condition, bad weld quality was still produced due to complicated manufacturing processes such as electrode wear, misalignment between the electrode and workpiece, poor part fit-up, and etc.. Therefore, the goal of this study was to measure the process signal which contains weld quality information, and to develop the process fault monitoring system. Welding force signal obtained through variety experimental conditions was analyzed and divided into three categories: good, shunt, and poor fit-up group. And then a monitoring algorithm made up of an artificial neural network that could estimate the process fault of each different category based on pattern was developed.

Local Obstacle Avoidance Method of Mobile Robot Using Virtual Distance Function (가상 거리 함수를 이용한 이동 로봇의 지역 장애물 회피 방법)

  • 임춘환;김성철;편석범
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.3
    • /
    • pp.67-75
    • /
    • 1998
  • This paper presents a new robot motion planning method for moving obstacle avoidance. To consider the mobility of a moving obstacle, we define virtual distance function(VDF) between the robot and the obstacle. At each sampling time, we use the VDF to construct an artificial potential, considering the motion of obstacles. The robot moves according to the repulsive and attractive force vector induced by the artificial potential function. The proposed algorithm can be driven the robot to avoid moving obstacles in real time. Some simulation studies show the effectiveness of the proposed method.

  • PDF

A Study on the Dynamic Characteristics of Robot Hand based on Segmented Control (구간분할 제어를 이용한 로봇핸드의 동특성에 관한 연구)

  • Jeong S.H.;Kim H.U.;Choi S.B.;Kim G.H.;Park J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.310-313
    • /
    • 2005
  • In recent years, as the robot technology is developed, the researches on the artificial muscle actuator that enable robot to move dexterously like biological organ become active. The widely used materials for artificial muscle are the shape memory alloy and the electro-active polymer. These actuators have the higher energy density than the electro-mechanical actuator such as motor. However, there are some drawbacks for actuator. SMA has the hysterical dynamic characteristics. In this paper, the simulation of anthropomophic robotic hand is performed using ADAMS and the segmented binary control for reducing the hysteresis of SMA is proposed. SMA is controlled by thermo-electric module. The relations between the force and the hysteresis are developed to verify the validity of the suggested method.

  • PDF

Optimization of Posture for Humanoid Robot Using Artificial Intelligence (인공지능을 이용한 휴머노이드 로봇의 자세 최적화)

  • Choi, Kook-Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.2
    • /
    • pp.87-93
    • /
    • 2019
  • This research deals with posture optimization for humanoid robot against external forces using genetic algorithm and neural network. When the robot takes a motion to push an object, the torque of each joint is generated by reaction force at the palm. This study aims to optimize the posture of the humanoid robot that will change this torque. This study finds an optimized posture using a genetic algorithm such that torques are evenly distributed over the all joints. Then, a number of different optimized postures are generated from various the reaction forces at the palm. The data is to be used as training data of MLP(Multi-Layer Perceptron) neural network with BP(Back Propagation) learning algorithm. Humanoid robot can find the optimal posture at different reaction forces in real time using the trained neural network include non-training data.

Human Assistance Robot Control by Artificial Neural Network for Accuracy and Safety

  • Zhang, Tao;Nakamura, Masatoshi
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.368-371
    • /
    • 2003
  • A new accurate and reliable human-in-the-loop control by artificial neural network (ANN) for human assistance robot was proposed in this paper. The principle of human-in-the-loop control by ANN was explained including the system architecture of human assistance robot control the design of the controller the control process as well as the switching of the different control patterns. Based on the proposed method, the control of meal assistance robot was implemented. In the controller of meal assistance robote a feedforward ANN controller was designed for the accurate position control. For safety a feedback ANN forcefree control was installed in the meal assistance robot. Both controllers have taken fully into account the influence of human arm upon the meal assistance robote and they can be switched smoothly based on the external force induced by the challenged person arm. By the experimental and simulation work of this method for an actual meal assistance robote the effectiveness of the proposed method was verified.

  • PDF

Design of a Wind Tunnel for Plug Seedlings Production under Artificial Light and Aerodynamic Characteristics above Plug Stand (인공광하의 공정육묘용 풍동 설계 및 공정묘 개체군상의 공기역학적 특성)

  • 김용현;고재풍수
    • Journal of Biosystems Engineering
    • /
    • v.21 no.4
    • /
    • pp.429-435
    • /
    • 1996
  • A wind tunnel consisting of two air flow conditioners with polycarbonate pipes, a plant growth room, a suction fan and fan controller, and fluorescent lamps, was designed to investigate the interactions between the growth of plug seedlings under artificial light and their Physical environments. Light transmissivities in the plant growth room based on the photosynthetic photon flux density and photosynthetically active radiation was appeared to be 96.3% and 96.8%, respectively. Measurement showed a uniformity in the vertical profiles of air current speed at the middle and rear regions of plug trays in wind tunnel. This result indicated that the development of a wind tunnel based on the design criteria of the American Society of Mechanical Engineers was adequate. Air current speed inside the plug stand was significantly decreased due to the resistance by the leaves of plug seedlings and boundary layer developed over and below the plug stand. Driving force to facilitate the diffusion of gas inside the plug stand might be regarded as extremely low. Aerodynamic characteristics above the plug stand under artificial light were investigated. As the air current speed increased, zero plane displacement decreased but roughness length and frictional velocity increased. Zero plane displacement linearly increased with the average height of plug seedlings. The wind tunnel developed in this study would be useful to investigate the effects of air current speed on the microclimate over and inside the plug stand and to collect basic data for a large-scale plug production under artificial light in a semi-closed ecosystem.

  • PDF