• Title/Summary/Keyword: artificial fit

Search Result 118, Processing Time 0.028 seconds

Prediction of fully plastic J-integral for weld centerline surface crack considering strength mismatch based on 3D finite element analyses and artificial neural network

  • Duan, Chuanjie;Zhang, Shuhua
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.354-366
    • /
    • 2020
  • This work mainly focuses on determination of the fully plastic J-integral solutions for welded center cracked plates subjected to remote tension loading. Detailed three-dimensional elasticeplastic Finite Element Analyses (FEA) were implemented to compute the fully plastic J-integral along the crack front for a wide range of crack geometries, material properties and weld strength mismatch ratios for 900 cases. According to the database generated from FEA, Back-propagation Neural Network (BPNN) model was proposed to predict the values and distributions of fully plastic J-integral along crack front based on the variables used in FEA. The determination coefficient R2 is greater than 0.99, indicating the robustness and goodness of fit of the developed BPNN model. The network model can accurately and efficiently predict the elastic-plastic J-integral for weld centerline crack, which can be used to perform fracture analyses and safety assessment for welded center cracked plates with varying strength mismatch conditions under uniaxial loading.

Application and Research of Monte Carlo Sampling Algorithm in Music Generation

  • MIN, Jun;WANG, Lei;PANG, Junwei;HAN, Huihui;Li, Dongyang;ZHANG, Maoqing;HUANG, Yantai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.10
    • /
    • pp.3355-3372
    • /
    • 2022
  • Composing music is an inspired yet challenging task, in that the process involves many considerations such as assigning pitches, determining rhythm, and arranging accompaniment. Algorithmic composition aims to develop algorithms for music composition. Recently, algorithmic composition using artificial intelligence technologies received considerable attention. In particular, computational intelligence is widely used and achieves promising results in the creation of music. This paper attempts to provide a survey on the music generation based on the Monte Carlo (MC) algorithm. First, transform the MIDI music format files to digital data. Among these data, use the logistic fitting method to fit the time series, obtain the time distribution regular pattern. Except for time series, the converted data also includes duration, pitch, and velocity. Second, using MC simulation to deal with them summed up their distribution law respectively. The two main control parameters are the value of discrete sampling and standard deviation. Processing the above parameters and converting the data to MIDI file, then compared with the output generated by LSTM neural network, evaluate the music comprehensively.

Exploration of Mycobiota in Cypripedium japonicum, an Endangered Species

  • Cho, Gyeongjun;Gang, Geun-Hye;Jung, Hee-Young;Kwak, Youn-Sig
    • Mycobiology
    • /
    • v.50 no.2
    • /
    • pp.142-149
    • /
    • 2022
  • Orchids live with mycorrhizal fungi in mutualism. This symbiotic relationship plays an essential role in the overall life cycle of orchids from germination, growth, settlement, and reproduction. Among the 1000 species of the orchid, the Korean lady's slipper, Cypripedium japonicum, is known as an endangered species. Currently, only five natural habitats of the Korean lady's slipper remain in South Korea, and the population of Korean lady's slipper in their natural habitat is not increasing. To prevent extinction, this study was designed to understand the fungal community interacting in the rhizosphere of the Korean lady's slipper living in the native and artificial habitats. In-depth analyses were performed to discover the vital mycorrhizal fungi contributing to habitat expansion and cultivation of the endangered orchid species. Our results suggested that Lycoperdon nigrescens contributed most to the increase in natural habitats and Russula violeipes as a characteristic of successful cultivation. And the fungi that helped L. nigrescens and R. violeipes to fit into the rhizosphere community in Korean lady's slipper native place were Paraboeremia selaginellae and Metarhizium anisopliae, respectively. The findings will contribute to restoring and maintaining the endangered orchid population in natural habitats.

Predicting idiopathic pulmonary fibrosis (IPF) disease in patients using machine approaches

  • Ali, Sikandar;Hussain, Ali;Kim, Hee-Cheol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.144-146
    • /
    • 2021
  • Idiopathic pulmonary fibrosis (IPF) is one of the most dreadful lung diseases which effects the performance of the lung unpredictably. There is no any authentic natural history discovered yet pertaining to this disease and it has been very difficult for the physicians to diagnosis this disease. With the advent of Artificial intelligent and its related technologies this task has become a little bit easier. The aim of this paper is to develop and to explore the machine learning models for the prediction and diagnosis of this mysterious disease. For our study, we got IPF dataset from Haeundae Paik hospital consisting of 2425 patients. This dataset consists of 502 features. We applied different data preprocessing techniques for data cleaning while making the data fit for the machine learning implementation. After the preprocessing of the data, 18 features were selected for the experiment. In our experiment, we used different machine learning classifiers i.e., Multilayer perceptron (MLP), Support vector machine (SVM), and Random forest (RF). we compared the performance of each classifier. The experimental results showed that MLP outperformed all other compared models with 91.24% accuracy.

  • PDF

Training Method of Artificial Neural Networks for Implementation of Automatic Composition Systems (자동작곡시스템 구현을 위한 인공신경망의 학습방법)

  • Cho, Jae-Min;Ryu, Eun Mi;Oh, Jin-Woo;Jung, Sung Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.8
    • /
    • pp.315-320
    • /
    • 2014
  • Composition is a creative activity of a composer in order to express his or her emotion into melody based on their experience. However, it is very hard to implement an automatic composition program whose composition process is the same as the composer. On the basis that the creative activity is possible from the imitation we propose a method to implement an automatic composition system using the learning capability of ANN(Artificial Neural Networks). First, we devise a method to convert a melody into time series that ANN can train and then another method to learn the repeated melody with melody bar for correct training of ANN. After training of the time series to ANN, we feed a new time series into the ANN, then the ANN produces a full new time series which is converted a new melody. But post processing is necessary because the produced melody does not fit to the tempo and harmony of music theory. In this paper, we applied a tempo post processing using tempo post processing program, but the harmony post processing is done by human because it is difficult to implement. We will realize the harmony post processing program as a further work.

A Process Tailoring Method Based on Artificial Neural Network (인공신경망 기반의 소프트웨어 개발 프로세스 테일러링 기법)

  • Park, Soo-Jin;Na, Ho-Young;Park, Soo-Yong
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.2
    • /
    • pp.201-219
    • /
    • 2006
  • The key to developing software with the lowest cost and highest quality is to implement or fit the software development process into a given environment. Generally, applying commercial or standard software development processes on a specific project can cause too much overhead if there is no effort to customize the given generic processes. Even though the customizing activities are done before starting the project, these activities are thoroughly dependent on the process engineers who have abundant experience and knowledge with tailoring processes. Owing to this dependence on human knowledge, it has been very difficult to explain the rationale for the results of process tailoring and it takes a long time to get the customized process that is applicable. Hence, we suggest a process tailoring method which adopts the artificial neural network based teaming theory to reduce the time consumed by process tailoring. Furthermore, we suggest the feedback loop mechanism to get higher accuracy in the neural network designed for the process tailoring. It can be done by reusing the process tailoring data results and determining its appropriateness level as sample data to the neural network. We proved the effectiveness of our process tailoring method through case studies using real historical data, which yielded abundant process tailoring results as sample data.

Three-dimensional analysis of artificial teeth position according to three type complete mandibular denture before and after polymerization (세 가지 방식으로 제작한 하악 총의치의 중합 전후에 따른 인공치아 위치 3차원 분석)

  • Park, Jin-Young;Kim, Dong-Yeon;Kim, Won-Soo;Lee, Gwang-Young;Jeong, Il-Do;Bae, So-Yeon;Kim, Ji-Hwan;Kim, Woong-Chul
    • Journal of Technologic Dentistry
    • /
    • v.40 no.4
    • /
    • pp.217-224
    • /
    • 2018
  • Purpose: The aim of this study was to evaluate accuracy of three type complete mandibular denture of before and after polymerization. Methods: Mandibular edentulous model was selected as the master model. 15 study models were made by Type IV stone. Wax complete mandibular dentures were produced by the denture base and artificial teeth. Before and after curing, STL files were obtained using a blue scanner. By superimposing the digitized complete mandibular denture data(after curing) with the CAD-reference(before curing) three-dimensionally, visual fit-discrepancies were drawn by calculating the root mean square (RMS) and visualized on a color-difference map. Each calculated RMS-value was statistically analyzed by 1-way analysis of variance(ANOVA) (${\alpha}=.05$). Results: Mean(SD) RMS-values was OM group $88.98(6.10){\mu}m$, BM group $82.35(13.46){\mu}m$, BDM group $77.83(9.46){\mu}m$. The results of the 1-way ANOVA showed no statistically significant differences in the RMS values of the Three groups for the material (P > .241). Conclusion : Deformation of artificial teeth position was observed in all groups after resin polymerization. But the values, all group were within the clinically acceptable range. The values of BDM group showed the least deformation than the other two groups.

Analysis and Validation of Geo-environmental Susceptibility for Landslide Occurrences Using Frequency Ratio and Evidential Belief Function - A Case for Landslides in Chuncheon in 2013 - (Frequency Ratio와 Evidential Belief Function을 활용한 산사태 유발에 대한 환경지리적 민감성 분석과 검증 - 2013년 춘천 산사태를 중심으로 -)

  • Lee, Won Young;Sung, Hyo Hyun;Ahn, Sejin;Park, Seon Ki
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.1
    • /
    • pp.61-89
    • /
    • 2020
  • The objective of this study is to characterize landslide susceptibility depending on various geo-environmental variables as well as to compare the Frequency Ratio (FR) and Evidential Belief Function (EBF) methods for landslide susceptibility analysis of rainfall-induced landslides. In 2013, a total of 259 landslides occurred in Chuncheon, Gangwon Province, South Korea, due to heavy rainfall events with a total cumulative rainfall of 296~721mm in 106~231 hours duration. Landslides data were mapped with better accuracy using the geographic information system (ArcGIS 10.6 version) based on the historic landslide records in Chuncheon from the National Disaster Management System (NDMS), the 2013 landslide investigation report, orthographic images, and aerial photographs. Then the landslides were randomly split into a testing dataset (70%; 181 landslides) and validation dataset (30%; 78 landslides). First, geo-environmental variables were analyzed by using FR and EBF functions for the full data. The most significant factors related to landslides were altitude (100~200m), slope (15~25°), concave plan curvature, high SPI, young timber age, loose timber density, small timber diameter, artificial forests, coniferous forests, soil depth (50~100cm), very well-drained area, sandy loam soil and so on. Second, the landslide susceptibility index was calculated by using selected geo-environmental variables. The model fit and prediction performance were evaluated using the Receiver Operating Characteristic (ROC) curve and the Area Under Curve (AUC) methods. The AUC values of both model fit and prediction performance were 80.5% and 76.3% for FR and 76.6% and 74.9% for EBF respectively. However, the landslide susceptibility index, with classes of 'very high' and 'high', was detected by 73.1% of landslides in the EBF model rather than the FR model (66.7%). Therefore, the EBF can be a promising method for spatial prediction of landslide occurrence, while the FR is still a powerful method for the landslide susceptibility mapping.

Integrating UAV Remote Sensing with GIS for Predicting Rice Grain Protein

  • Sarkar, Tapash Kumar;Ryu, Chan-Seok;Kang, Ye-Seong;Kim, Seong-Heon;Jeon, Sae-Rom;Jang, Si-Hyeong;Park, Jun-Woo;Kim, Suk-Gu;Kim, Hyun-Jin
    • Journal of Biosystems Engineering
    • /
    • v.43 no.2
    • /
    • pp.148-159
    • /
    • 2018
  • Purpose: Unmanned air vehicle (UAV) remote sensing was applied to test various vegetation indices and make prediction models of protein content of rice for monitoring grain quality and proper management practice. Methods: Image acquisition was carried out by using NIR (Green, Red, NIR), RGB and RE (Blue, Green, Red-edge) camera mounted on UAV. Sampling was done synchronously at the geo-referenced points and GPS locations were recorded. Paddy samples were air-dried to 15% moisture content, and then dehulled and milled to 92% milling yield and measured the protein content by near-infrared spectroscopy. Results: Artificial neural network showed the better performance with $R^2$ (coefficient of determination) of 0.740, NSE (Nash-Sutcliffe model efficiency coefficient) of 0.733 and RMSE (root mean square error) of 0.187% considering all 54 samples than the models developed by PR (polynomial regression), SLR (simple linear regression), and PLSR (partial least square regression). PLSR calibration models showed almost similar result with PR as 0.663 ($R^2$) and 0.169% (RMSE) for cloud-free samples and 0.491 ($R^2$) and 0.217% (RMSE) for cloud-shadowed samples. However, the validation models performed poorly. This study revealed that there is a highly significant correlation between NDVI (normalized difference vegetation index) and protein content in rice. For the cloud-free samples, the SLR models showed $R^2=0.553$ and RMSE = 0.210%, and for cloud-shadowed samples showed 0.479 as $R^2$ and 0.225% as RMSE respectively. Conclusion: There is a significant correlation between spectral bands and grain protein content. Artificial neural networks have the strong advantages to fit the nonlinear problem when a sigmoid activation function is used in the hidden layer. Quantitatively, the neural network model obtained a higher precision result with a mean absolute relative error (MARE) of 2.18% and root mean square error (RMSE) of 0.187%.

Classification Activity Thoughts of Elementary Sixth Grade Pupils about Artificial and Natural Stimulus (초등학교 6학년의 인공자극과 자연자극에 대한 분류 사고)

  • Choi, Hyun-Dong;Yang, Il-Ho;Kwon, Chi-Soon
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.1
    • /
    • pp.40-48
    • /
    • 2006
  • The purpose of this study was to investigate 6th grade pupil's thoughts during classification activities. Two suitable tools in classification activity achievement were developed to achieve this purpose. The first was an artificial stimulus card in which the attribute was prominent; and the other a natural stimulus card in which the attribute was less prominent. Participants of the study were 8 6th grade pupils from D elementary school in Yeongdeungpo-gu, Seoul. Data were collected from interviews with the pupils, the pupil's recordings of classification, the investigator's observation of pupil's actions, and video recordings of the pupil's subject classification process. Results found in this study were as following. First, when doing classification 6th grade pupils considered attribute observation, attribute estimation, preliminary inspection, criteria selection, and sample identification. Second, 6th grade pupil classification thought process was found to be repetitive, passing through the steps of attribute observation, attribute estimation, preliminary inspection, criteria selection, and lastly, sample identification. Third, 6th grade pupils took advantage of cognitive economic efficiency. Study findings also revealed guidance for the teaching and learning of scientific classification. First, once teachers understand the classification thought process of students, more effective classification guidance will be possible. Second, it is necessary that guidance fit each step of the classification thought process.