• Title/Summary/Keyword: artificial earthquakes

Search Result 161, Processing Time 0.028 seconds

Artificial blasts discrimination by using seismo-acoustic data in 2002 (지진-공중음과 자료를 이용한 2002천도 인공발파 식별)

  • 제일영;전정수;이희일;신인철
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.38-44
    • /
    • 2003
  • Artificial blasts, defined as seismo-acoustic events, were discriminated from natural earthquakes in the Korean Peninsula by the seismo-acoustic analysis. Total 197 seismo-acoustic events corresponding to 9 percent of seismic events in 2002 were analyzed and classified as artificial surface blasts. Events distribution pattern of the seismo-acoustic events in 2002 was similar to the previous result in 1999-2001, except for two regions. Newly determined seismo-acoustic events were added to the previous artificial blast database. To extend infrasound detection capability, new small-scale infrasound array(TJIAR) was installed in KIGAM. Preliminary analysis for the small array was conducted to discriminate artificial blasts in the southwestern part of the Korean Peninsula. The small array discriminated S seismo-acoustic events during short period analysis. And two infrasound arrays(TJIAR and CHNAR) were used to determine approximate sound source location by cross bearing method.

  • PDF

Studying the Park-Ang damage index of reinforced concrete structures based on equivalent sinusoidal waves

  • Mazloom, Moosa;Pourhaji, Pardis;Shahveisi, Masoud;Jafari, Seyed Hassan
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.83-97
    • /
    • 2019
  • In this research, the vulnerability of some reinforced concrete frames with different stories are studied based on the Park-Ang Damage Index. The damages of the frames are investigated under various earthquakes with nonlinear dynamic analysis in IDARC software. By examining the most important characteristics of earthquake parameters, the damage index and vulnerability of these frames are investigated in this software. The intensity of Erias, velocity spectral intensity (VSI) and peak ground velocity (PGV) had the highest correlation, and root mean square of displacement ($D_{rms}$) had the lowest correlation coefficient among the parameters. Then, the particle swarm optimization (PSO) algorithm was used, and the sinusoidal waves were equivalent to the used earthquakes according to the most influential parameters above. The damage index equivalent to these waves is estimated using nonlinear dynamics analysis. The comparison between the damages caused by earthquakes and equivalent sinusoidal waves is done too. The generations of sinusoidal waves equivalent to different earthquakes are generalized in some reinforced concrete frames. The equivalent sinusoidal wave method was exact enough because the greatest difference between the results of the main and artificial accelerator damage index was about 5 percent. Also sinusoidal waves were more consistent with the damage indices of the structures compared to the earthquake parameters.

New method for generation of artificial ground motion by a nonstationary Kanai-Tajimi model and wavelet transform

  • Amiri, G. Ghodrati;Bagheri, A.;Fadavi, M.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.6
    • /
    • pp.709-723
    • /
    • 2007
  • Considering the vast usage of time-history dynamic analyses to calculate structural responses and lack of sufficient and suitable earthquake records, generation of artificial accelerograms is very necessary. The main target of this paper is to present a novel method based on nonstationary Kanai-Tajimi model and wavelet transform to generate more artificial earthquake records, which are compatible with target spectrum. In this regard, the generalized nonstationary Kanai-Tajimi model to include the nonstationary evaluation of amplitude and dominant frequency of ground motion and properties of wavelet transform is used to generate ground acceleration time history. Application of the method for El Centro 1940 earthquake and two Iranian earthquakes (Tabas 1978 and Manjil 1990) is presented. It is shown that the model and identification algorithms are able to accurately capture the nonstationary features of these earthquake accelerograms. The statistical characteristics of the spectral response of the generated accelerograms are compared with those for the actual records to demonstrate the effectiveness of the method. Also, for comparison of the presented method with other methods, the response spectra of the synthetic accelerograms compared with the models of Fan and Ahmadi (1990) and Rofooei et al. (2001) and it is shown that the response spectra of the synthetic accelerograms with the method of this paper are close to those of actual earthquakes.

Evaluation on Seismic Performance of Limited Ductile RC Bridge Piers by Pseudo-Dynamic Test

  • Chung, Young-Soo;Park, Jong-Heob;Cho, Chang-Beck;Seo, Joo-Won
    • KCI Concrete Journal
    • /
    • v.13 no.2
    • /
    • pp.3-9
    • /
    • 2001
  • Pseudo dynamic test for seven circular RC bridge piers has been carried out to investigate their seismic performance subjected to expected artificial earthquake motions. The objective of this experimental study is to investigate the hysteretic behavior of reinforced concrete bridge piers, which have been widely used for railway and urban transportation facilities. Important test parameters are confinement steel ratio, and input ground motion. The seismic behavior of circular RC bridge piers under artificial ground motions has been evaluated through displacement ductility, cumulative energy input, and dissipation capacity. It can be concluded that RC bridge piers designed in a limited ductile behavior provision of Eurocode 8 have been determined to show good seismic performance even under moderate artificial earthquakes.

  • PDF

Selection of Ground Motions for the Assessment of Liquefaction Potential for South Korea (국내 액상화 평가를 위한 지진파 선정)

  • Jang, Young-Eun;Seo, Hwanwoo;Kim, Byungmin;Han, Jin-Tae;Park, Duhee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.111-119
    • /
    • 2020
  • Recently, some of the most destructive earthquakes have occurred in South Korea since earthquake observations began in 1978. In particular, the soil liquefactions have been reported in Pohang as a result of the ML 5.4 earthquake that occurred in November 2017. Liquefaction-induced ground deformations can cause significant damage to a wide range of buildings and infrastructures. Therefore, it is necessary to take practical steps to ensure safety during an earthquake. In the current seismic design in South Korea, the Hachinohe earthquake and Ofunato earthquake recorded in Japan, along with artificial earthquakes, have been generally used for input motions in dynamic analyses. However, such strong ground motions are only from Japan, and artificial earthquake ground motions are different from real ground motions. In this study, seven ground motions are selected, including those recorded in South Korea, while others are compatible to the current design spectra of South Korea. The effects of the newly selected ground motions on site response analyses and liquefaction analyses are evaluated.

Design response spectra-compliant real and synthetic GMS for seismic analysis of seismically isolated nuclear reactor containment building

  • Ali, Ahmer;Abu-Hayah, Nadin;Kim, Dookie;Cho, Sung Gook
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.825-837
    • /
    • 2017
  • Due to the severe impacts of recent earthquakes, the use of seismic isolation is paramount for the safety of nuclear structures. The diversity observed in seismic events demands ongoing research to analyze the devastating attributes involved, and hence to enhance the sustainability of base-isolated nuclear power plants. This study reports the seismic performance of a seismically-isolated nuclear reactor containment building (NRCB) under strong short-period ground motions (SPGMs) and long-period ground motions (LPGMs). The United States Nuclear Regulatory Commission-based design response spectrum for the seismic design of nuclear power plants is stipulated as the reference spectrum for ground motion selection. Within the period range(s) of interest, the spectral matching of selected records with the target spectrum is ensured using the spectral-compatibility approach. NRC-compliant SPGMs and LPGMs from the mega-thrust Tohoku earthquake are used to obtain the structural response of the base-isolated NRCB. To account for the lack of earthquakes in low-to-moderate seismicity zones and the gap in the artificial synthesis of long-period records, wavelet-decomposition based autoregressive moving average modeling for artificial generation of real ground motions is performed. Based on analysis results from real and simulated SPGMs versus LPGMs, the performance of NRCBs is discussed with suggestions for future research and seismic provisions.

A Proposal of Reference Power Spectral Density Functions Compatible with Highway Bridge Design Specta (도로교 내진설계 스펙트럼에 부합하는 표준 PSD함수의 제안)

  • Choi, Dong Ho;Lee, Sang Hoon;Koh, Jung Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.59-67
    • /
    • 2008
  • Acceleration time history used in the seismic analysis of nuclear power plant structures should envelop a target power spectral density (PSD) function in addition to the design response spectrum in order to have sufficient energy at each frequency for the purpose of ensuring adequate load. The safety for complex long-span highway bridges cannot be over-emphasize. An alternative method to improve the seismic capacity is to ensure the minimum PSD function of the applied seismic load. This study proposes a technical scheme to obtain the reference power spectral density function by using artificial earthquakes which are compatible with the highway bridge design spectrum.

1D finite element artificial boundary method for layered half space site response from obliquely incident earthquake

  • Zhao, Mi;Yin, Houquan;Du, Xiuli;Liu, Jingbo;Liang, Lingyu
    • Earthquakes and Structures
    • /
    • v.9 no.1
    • /
    • pp.173-194
    • /
    • 2015
  • Site response analysis is an important topic in earthquake engineering. A time-domain numerical method called as one-dimensional (1D) finite element artificial boundary method is proposed to simulate the homogeneous plane elastic wave propagation in a layered half space subjected to the obliquely incident plane body wave. In this method, an exact artificial boundary condition combining the absorbing boundary condition with the inputting boundary condition is developed to model the wave absorption and input effects of the truncated half space under layer system. The spatially two-dimensional (2D) problem consisting of the layer system with the artificial boundary condition is transformed equivalently into a 1D one along the vertical direction according to Snell's law. The resulting 1D problem is solved by the finite element method with a new explicit time integration algorithm. The 1D finite element artificial boundary method is verified by analyzing two engineering sites in time domain and by comparing with the frequency-domain transfer matrix method with fast Fourier transform.

Application of neural networks and an adapted wavelet packet for generating artificial ground motion

  • Asadi, A.;Fadavi, M.;Bagheri, A.;Ghodrati Amiri, G.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.6
    • /
    • pp.575-592
    • /
    • 2011
  • For seismic resistant design of critical structures, a dynamic analysis, either response spectrum or time history is frequently required. Owing to the lack of recorded data and the randomness of earthquake ground motion that may be experienced by structure in the future, usually it is difficult to obtain recorded data which fit the requirements (site type, epicenteral distance, etc.) well. Therefore, the artificial seismic records are widely used in seismic designs, verification of seismic capacity and seismic assessment of structures. The purpose of this paper is to develop a numerical method using Artificial Neural Network (ANN) and wavelet packet transform in best basis method which is presented for the decomposition of artificial earthquake records consistent with any arbitrarily specified target response spectra requirements. The ground motion has been modeled as a non-stationary process using wavelet packet. This study shows that the procedure using ANN-based models and wavelet packets in best-basis method are applicable to generate artificial earthquakes compatible with any response spectra. Several numerical examples are given to verify the developed model.

Artificial blasts discrimination by using seismo-acoustic data in 2001 (지진-공중음파 자료를 이용한 2001년도 인공발파 식별)

  • 제일영;전명순;전정수
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.59-63
    • /
    • 2002
  • Artificial blasts, defined as seismo-acoustic events, were discriminated from natural earthquakes in the Korean Peninsula by analyzing seismo-acoustic data. 219 seismo-acoustic events corresponding to 9 percent of total seismic events in 2001 were analyzed and classified as artificial surface blasts. Most seismo-acoustic events were concentrated in several areas. This distribution pattern was similar to the previous result in 1999-2000. Most of seismo-acoustic events especially concentrated at 7 small areas in North and South Korea. The number of seismo-acoustic events occurred in North and South Korea was 79 and 140 events, respectively. The local magnitude of seismic events from North Korea was relatively larger than from South. And some infrasound occurred from North Korea had a characteristic of sequential arrivals of signals, which reflected the different propagation in the atmosphere.

  • PDF