• Title/Summary/Keyword: artificial boundary

Search Result 220, Processing Time 0.027 seconds

Effect of Artificial Changes in Geographical Features on Local Wind (인공적 지형변화가 국지풍에 미치는 영향)

  • Kim, Do-Yong;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.2
    • /
    • pp.185-194
    • /
    • 2016
  • The effect of artificial changes in geographical features on local wind was analyzed at the construction site of bridge and fill-up bank in the southern part of Haui-do. Geographic Information System (GIS) data and Computational Fluid Dynamics (CFD) model were used in this study. Three-dimensional numerical topography based on the GIS data for the target area was constructed for the surface boundary input data of the CFD model. The wind observations at an Automatic Weather Station (AWS) located in Haui-do were used to set-up the model inflows. The seasonal simulations were conducted. The differences in surface wind speed between after and before artificial changes in geographical features were analyzed. The surface wind speed decreases 5 to 20% at the south-western part and below 2% of the spatial average for salt field. There was also marked the effect of artificial changes in geographical features on local wind in the westerly wind case for the target area.

A Systems Engineering Approach to Predict the Success Window of FLEX Strategy under Extended SBO Using Artificial Intelligence

  • Alketbi, Salama Obaid;Diab, Aya
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.2
    • /
    • pp.97-109
    • /
    • 2020
  • On March 11, 2011, an earthquake followed by a tsunami caused an extended station blackout (SBO) at the Fukushima Dai-ichi NPP Units. The accident was initiated by a total loss of both onsite and offsite electrical power resulting in the loss of the ultimate heat sink for several days, and a consequent core melt in some units where proper mitigation strategies could not be implemented in a timely fashion. To enhance the plant's coping capability, the Diverse and Flexible Strategies (FLEX) were proposed to append the Emergency Operation Procedures (EOPs) by relying on portable equipment as an additional line of defense. To assess the success window of FLEX strategies, all sources of uncertainties need to be considered, using a physics-based model or system code. This necessitates conducting a large number of simulations to reflect all potential variations in initial, boundary, and design conditions as well as thermophysical properties, empirical models, and scenario uncertainties. Alternatively, data-driven models may provide a fast tool to predict the success window of FLEX strategies given the underlying uncertainties. This paper explores the applicability of Artificial Intelligence (AI) to identify the success window of FLEX strategy for extended SBO. The developed model can be trained and validated using data produced by the lumped parameter thermal-hydraulic code, MARS-KS, as best estimate system code loosely coupled with Dakota for uncertainty quantification. A Systems Engineering (SE) approach is used to plan and manage the process of using AI to predict the success window of FLEX strategies under extended SBO conditions.

Segmentation of Bacterial Cells Based on a Hybrid Feature Generation and Deep Learning (하이브리드 피처 생성 및 딥 러닝 기반 박테리아 세포의 세분화)

  • Lim, Seon-Ja;Vununu, Caleb;Kwon, Ki-Ryong;Youn, Sung-Dae
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.965-976
    • /
    • 2020
  • We present in this work a segmentation method of E. coli bacterial images generated via phase contrast microscopy using a deep learning based hybrid feature generation. Unlike conventional machine learning methods that use the hand-crafted features, we adopt the denoising autoencoder in order to generate a precise and accurate representation of the pixels. We first construct a hybrid vector that combines original image, difference of Gaussians and image gradients. The created hybrid features are then given to a deep autoencoder that learns the pixels' internal dependencies and the cells' shape and boundary information. The latent representations learned by the autoencoder are used as the inputs of a softmax classification layer and the direct outputs from the classifier represent the coarse segmentation mask. Finally, the classifier's outputs are used as prior information for a graph partitioning based fine segmentation. We demonstrate that the proposed hybrid vector representation manages to preserve the global shape and boundary information of the cells, allowing to retrieve the majority of the cellular patterns without the need of any post-processing.

Image Segmentation Using Level Set Method with New Speed Function (새로운 속도함수를 갖는 레벨 셋 방법을 이용한 의료영상분할)

  • Kim, Sun-Worl;Cho, Wan-Hyun
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.2
    • /
    • pp.335-345
    • /
    • 2011
  • In this paper, we propose a new hybrid speed function for image segmentation using level set. A new proposed speed function uses the region and boundary information of image object for the exact result of segmentation. The region information is defined by the probability information of pixel intensity in a ROI(region-of-interest), and the boundary information is defined by the gradient vector flow obtained from the gradient of image. We show the results of experiment for an various artificial image and real medical image to verify the accuracy of segmentation using proposed method.

Second-order wave radiation by multiple cylinders in time domain through the finite element method

  • Wang, C.Z.;Mitra, S.;Khoo, B.C.
    • Ocean Systems Engineering
    • /
    • v.1 no.4
    • /
    • pp.317-336
    • /
    • 2011
  • A time domain finite element based method is employed to analyze wave radiation by multiple cylinders. The nonlinear free surface and body surface boundary conditions are satisfied based on the perturbation method up to the second order. The first- and second-order velocity potential problems at each time step are solved through a finite element method (FEM). The matrix equation of the FEM is solved through an iteration and the initial solution is obtained from the result at the previous time step. The three-dimensional (3D) mesh required is generated based on a two-dimensional (2D) hybrid mesh on a horizontal plane and its extension in the vertical direction. The hybrid mesh is generated by combining an unstructured grid away from cylinders and two structured grids near the cylinder and the artificial boundary, respectively. The fluid velocity on the free surface and the cylinder surface are calculated by using a differential method. Results for various configurations including two-cylinder and four-cylinder cases are provided to show the mutual influence due to cylinders on the first and second waves and forces.

Simulation of Reflective Boundaries Using the Sponge Layer in Boussinesq Wave Propagation Model (Boussinesq 파랑전파모델에서 스펀지층을 이용한 반사경계의 모의)

  • Chun, In-Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.5
    • /
    • pp.429-435
    • /
    • 2007
  • The present study proposed a method fer simulating reflective boundary conditions in Boussinesq wave propagation model by lining lateral boundaries like breakwaters and seawalls with artificial sponge layers. In order to find out the reflective characteristics of sponge layers, 1D numerical experiments were performed varying the relative sponge width (sponge width/wave length). The results showed that the reflection coefficient can be effectively realized from no reflection to full reflection simply by adjusting the relative sponge width. Based on the results, a multiple regression formula was proposed to delineate the relationship among the reflection coefficient and other dimensionless variables. Finally, the reflective sponge layer was applied to a semi-infinite breakwater, demonstrating that it can also be successfully employed in 2D applications.

끊김앞에서 보이는 서울말의 억양특징

  • Yun Il-Seung
    • MALSORI
    • /
    • no.21_24
    • /
    • pp.90-110
    • /
    • 1992
  • The purpose of this thesis is to investigate the intonation features of the last two syllables of rhythmic units, with the exception of the sentence final unit, in the Seoul dialect of Korean. The Model 5500 Sona-graph was used to measure the pitch and duration of the target syllables. There are two classes of materials. One class was designed to determine the intonation of rhythmic units in a natural situation and the other to investigate the intonation of rhythmic units in an artificial situation, in which speakers were asked to read the materials pausing only at the marked boundaries, with a view to identifying the intonation of Seoul dialect more clearly. The findings of this investigation are as follows: (1) Korean averages an 11% rising intonation between the two syllables at the end of a rhythmic unit. (2) The rising rate between the final two syllables' pitch values at the subject rhythmic unit is generally higher than those at other units in a sentence and it seems to be meaningful syntactically. (3) Before a boundary the rhythmic units undergo 'pre-lowering', in which the pitch gradually lowers from the first syllable to the penultimate. (4) Every syllable in each rhythmic unit tends to lengthen when speakers read the materials with a pause between units and the tendency is most salient at the final syllable before a boundary.

  • PDF

Efficient Incremental Learning using the Preordered Training Data (미리 순서가 매겨진 학습 데이타를 이용한 효과적인 증가학습)

  • Lee, Sun-Young;Bang, Sung-Yang
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.2
    • /
    • pp.97-107
    • /
    • 2000
  • Incremental learning generally reduces training time and increases the generalization of a neural network by selecting training data incrementally during the training. However, the existing methods of incremental learning repeatedly evaluate the importance of training data every time they select additional data. In this paper, an incremental learning algorithm is proposed for pattern classification problems. It evaluates the importance of each piece of data only once before starting the training. The importance of the data depends on how close they are to the decision boundary. The current paper presents an algorithm which orders the data according to their distance to the decision boundary by using clustering. Experimental results of two artificial and real world classification problems show that this proposed incremental learning method significantly reduces the size of the training set without decreasing generalization performance.

  • PDF

Hybrid adaptive neuro-fuzzy inference system method for energy absorption of nano-composite reinforced beam with piezoelectric face-sheets

  • Lili Xiao
    • Advances in nano research
    • /
    • v.14 no.2
    • /
    • pp.141-154
    • /
    • 2023
  • Effects of viscoelastic foundation on vibration of curved-beam structure with clamped and simply-supported boundary conditions is investigated in this study. In doing so, a micro-scale laminate composite beam with two piezoelectric face layer with a carbon nanotube reinforces composite core is considered. The whole beam structure is laid on a viscoelastic substrate which normally occurred in actual conditions. Due to small scale of the structure non-classical elasticity theory provided more accurate results. Therefore, nonlocal strain gradient theory is employed here to capture both nano-scale effects on carbon nanotubes and microscale effects because of overall scale of the structure. Equivalent homogenous properties of the composite core is obtained using Halpin-Tsai equation. The equations of motion is derived considering energy terms of the beam and variational principle in minimizing total energy. The boundary condition is assumed to be clamped at one end and simply supported at the other end. Due to nonlinear terms in the equations of motion, semi-analytical method of general differential quadrature method is engaged to solve the equations. In addition, due to complexity in developing and solving equations of motion of arches, an artificial neural network is design and implemented to capture effects of different parameters on the inplane vibration of sandwich arches. At the end, effects of several parameters including nonlocal and gradient parameters, geometrical aspect ratios and substrate constants of the structure on the natural frequency and amplitude is derived. It is observed that increasing nonlocal and gradient parameters have contradictory effects of the amplitude and frequency of vibration of the laminate beam.

Speaker Identification with Estimating the Number of Cluster Based on Boundary Subtractive Clustering (경계 차감 클러스터링에 기반한 클러스터 개수 추정 화자식별)

  • Lee, Youn-Jeong;Choi, Min-Jung;Seo, Chang-Woo;Hahn, Hern-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.5
    • /
    • pp.199-206
    • /
    • 2007
  • In this paper we propose a new clustering algorithm that performs clustering the feature vectors for the speaker identification. Unlike typical clustering approaches, the proposed method performs the clustering without the initial guesses of locations of the cluster centers and a priori information about the number of clusters. Cluster centers are obtained incrementally by adding one cluster center at a time through the boundary subtractive clustering algorithm. The number of clusters is obtained from investigating the mutual relationship between clusters. The experimental results for artificial datum and TIMIT DB show the effectiveness of the proposed algorithm as compared with the conventional methods.