• Title/Summary/Keyword: artificial blasting

Search Result 34, Processing Time 0.022 seconds

A Comparison of Ground Vibration in Center Cut Blasting using Artificial Joints (인공절리를 이용한 심발 발파에서의 지반진동 비교)

  • Park, Hoon;Suk, Chul-Gi;Noh, You-Song
    • Explosives and Blasting
    • /
    • v.36 no.4
    • /
    • pp.16-25
    • /
    • 2018
  • In order to reduce ground vibration during tunnel excavation, a free surface blasting method has been applied in which a partial free surface is formed on the excavation surface and controlled blasting is performed. In this study, the ground vibration reduction due to artificial joints was evaluated by forming artificial joints on center cut using diamond wire saw and comparing the ground vibration caused by center cut blasting. As a result of comparison, ground vibration was reduced by artificial joints center cut blasting more than normal center cut blasting, and the ground vibration reduction effect of horizontal artificial joints center cut blasting was evaluated more than that of vertical artificial joint center cut blasting.

Evaluation of Rock Fragmentation due to Artificial Joint Effect (인공절리에 의한 암석의 파쇄도 평가)

  • Noh, You-Song;Suk, Chul-Gi;Park, Hoon
    • Explosives and Blasting
    • /
    • v.36 no.4
    • /
    • pp.9-15
    • /
    • 2018
  • Since the rock fragmentation by blasting can affect the subsequent processes including loading, hauling and secondary crushing, its control is essential for the assessment of blasting efficiency as well as production cost. In this study, we were analyzed the rock fragmentation by the direction of artificial joint. The underground blasting experiments were performed after forming the vertical and horizontal artificial joints. The blast fragmentation was conducted by the split-desktop which is a 2D image processing program. As a result, it was found that the horizontal artificial joint was evaluated to have lower overall the size of muck pile than the vertical artificial joint and the distribution of the size of muck pile was varied. It is possible that the direction of artificial joint could suppress the occur of oversize muck pile and control to a certain size or less.

Review of the Application of Artificial Intelligence in Blasting Area (발파 분야에서의 인공지능 활용 현황)

  • Kim, Minju;Ismail, L.A.;Kwon, Sangki
    • Explosives and Blasting
    • /
    • v.39 no.3
    • /
    • pp.44-64
    • /
    • 2021
  • With the upcoming 4th industrial revolution era, the applications of artificial intelligence(AI) and big data in engineering are increasing. In the field of blasting, there have been various reported cases of the application of AI. In this paper, AI techniques, such as artificial neural network, fuzzy logic, generic algorithm, swarm intelligence, and support vector machine, which are widely applied in blasting area, are introduced, The studies about the application of AI for the prediction of ground vibration, rock fragmentation, fly rock, air overpressure, and back break are surveyed and summarized. It is for providing starting points for the discussion of active application of AI on effective and safe blasting design, enhancing blasting performance, and minimizing the environmental impact due to blasting.

A Study on the Effect of Artificial Cutting Slot on the Fragmentation and Vibration Propagation in the Full-scaled Concrete Block Blasting (콘크리트 블록 발파 실험을 통한 인공 슬롯 자유면이 진동전파 및 파쇄효과에 미치는 영향에 관한 연구)

  • Oh, Se-Wook;Min, Gyeong-Jo;Park, Se-Woong;Park, Hoon;Noh, You-Song;Suk, Chul-Gi;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.692-705
    • /
    • 2018
  • Ground vibration is one of the remarkable issues in tunnel blasting. In recent studies, to improve the fragmentation with reduction of ground vibration in tunnel blasting, a vibration-controlled blasting method with artificial cutting slot near the center-cut holes has been suggested. This study examines the effect of the different arrangement of artificial cut-slot on the vibration reduction and fragmentation by performing the full-scaled concrete block blast experiments and the numerical simulations with 3D-DFPA. The results show that the existence of artificial slot contributes to the improvement of vibration reduction, blast fragmentation and the efficiency of the cutting slot blast. It can be explained that the artificial slot play a free surface role and should decrease the burden between the cut holes. Crater volumes of the blasted concrete blocks were measured by 3-dimensional digital image analysis and compared with the ideal standard crater volume which can be calculated by theoretical standard blast design method. As a result, the ratio of burden and hole diameter which should achieve the standard crater in the cut-hole blasting were suggested.

Evaluation of Blast Velocity by Artificial Joint Conditions using Numerical Analysis (수치해석을 이용한 인공절리 조건에 따른 발파속도 평가)

  • Suk, Chul-Gi;Noh, You-Song;Park, Hoon
    • Explosives and Blasting
    • /
    • v.35 no.4
    • /
    • pp.1-9
    • /
    • 2017
  • This study undertakes an evaluation of blast effect through the analysis of the contribution rate and effect that different artificial joint number, artificial joint spacing and artificial joint angle have on blast velocity. Blast velocity according to the different state of the artificial joint was obtained using AUTODYN, a dynamic analysis program. The result of the numerical analysis was subjected to further normalization analysis. For the contribution rate of design factors was analyzed using the robust design method. The orthogonal array used in the analysis was $L_9(3^4)$ and each parameters were having 3 levels. The result of normalization analysis regarding the artificial joint angle was indicated a tendency in which blast velocity decreased. The result of analyzing blast velocity regarding artificial joint spacing and artificial joint angle was indicated a tendency in which blast velocity decreased as artificial joint spacing increased when the angle was perpendicular. In the case of blast velocity contribution rates they were ranked in the descending order of artificial joint angle, artificial joint number, artificial joint spacing.

Evaluation of Fundamental Period of Rockfill Dam Using Blasting Vibration Test (발파진동실험을 이용한 사력댐의 고유주기 산정)

  • Kim, Nam-Ryong;Ha, Ik-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5C
    • /
    • pp.185-192
    • /
    • 2012
  • The objective of this study is to present and verify a method for evaluating the fundamental period of a rockfill dam using artificially generated vibration from a blasting event. In this study, the artificial blasting vibration tests were carried out at the site adjacent to the existing Seongdeok Dam for the first time in Korea. The artificial vibrations were induced by 4 different types of blasting with the various depths of blasting boreholes and the various explosive charge weight. During the tests, the accelerations time histories were recorded at the crest of the dam. In this acceleration history, only free vibration decay part following the main vibration event was extracted and it was analyzed by frequency domain analysis using Fast Fourier Transform (FFT). From the results of FFT, the fundamental period of the target dam was evaluated. It is found that the effect of different blasting types on the fundamental period of the target dam is negligible and the fundamental period of the target dam can be consistently obtained by blasting vibration tests. Furthermore, it is found that the period of the target dam calculated by the method using blasting vibration test is similar to that obtained by the method of previous researchers using the real earthquake records. Therefore, in case that the earthquake record is not available, the fundamental period of a rockfill dam can be reasonably evaluated if blasting vibration test is allowed at the site adjacent to the dam.

Enhancement and Evaluation of Fatigue Resistance for Spine Fixation System (척추고정장치의 피로성능 평가와 향상)

  • Kim, Hyun-Mook;Kim, Sung-Kon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.8
    • /
    • pp.142-147
    • /
    • 2009
  • Spinal fixation systems provide surgical versatility, but the complexity of their design reduces their strength and fatigue resistance. There is no published data on the mechanical properties of such screws. Screws were assembled according to a vertebrectomy model for destructive mechanical testing. A group of two assemblies was tested in static compression. One group was applied to surface a grit blasting method and another group was applied to surface a bead blasting method. Modes of failure, yield, and ultimate strength, yield stiffness, and cycles to failure were determined for six assembles. Static compression 2% offset yield load ranges was from 327 to 419N. Fatigue loads were determined two levels, 37.5% and 50% of the average load from static compression ultimate load. An assembly of bead blasting treatment only achieved 5 million cycles at 37.5% level in compression bending.

Estimation of Shear Wave Velocity of Earth Dam Materials Using Artificial Blasting Vibration Test (인공발파진동실험을 이용한 흙댐 축조재료의 전단파속도 산정)

  • Ha, Ik-Soo;Kim, Nam-Ryong;Lim, Jeong-Yeul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.619-629
    • /
    • 2013
  • The objective of this study is to estimate shear wave velocity of earth dam materials using artificially generated vibration from blasting events and to verify its applicability. In this study, the artificial blasting and vibration monitoring were carried out at the site adjacent to Seongdeok dam, which is the first blasting test for an existing dam in Korea. The vibrations were induced by 4 different types of blasting with various depths of blasting boreholes and explosive charge weights. During the tests, the acceleration time histories were recorded at the bedrock adjacent to the explosion and the crest of the dam. From frequency analyses of acceleration histories measured at the crest, the fundamental frequency of the target dam could be evaluated. Numerical analyses varying shear moduli of earth fill zone were carried out using the acceleration histories measured at the bedrock as input ground motions. From the comparison between the fundamental frequencies calculated by numerical analyses and measured records, the shear wave velocities with depth, which are closely related to shear moduli, could be determined. It is found that the effect of different blasting types on shear wave velocity estimation for the target dam materials is negligible and the shear wave velocity can be consistently evaluated. Furthermore, comparing the shear wave velocity with the previous researchers' empirical relationships, the applicability of suggested method is verified. Therefore, in case that the earthquake record is not available, the shear wave velocity of earth dam materials can be reasonably evaluated if blasting vibration test is allowed at the site adjacent to the dam.

Evaluation of Blast influence by Artificial Joint in Concrete Block (콘크리트 블록에서 인공절리에 따른 발파영향 평가)

  • Noh, You-Song;Min, Gyeong-Jo;Oh, Se-Wook;Park, Se-Woong;Suk, Chul-Gi;Cho, Sang-Ho;Park, Hoon
    • Explosives and Blasting
    • /
    • v.36 no.3
    • /
    • pp.1-9
    • /
    • 2018
  • This study was conducted to evaluate the influences of the angle of artificial joints, the distance between the artificial joints and the blast hole, and the number of artificial joints on the pressure wave propagation, crack propagation, and blast wave velocity. The evaluation was conducted numerically by use of the Euler-Lagrange solver supported by the AUTODYN, which is a dynamic FEM program. As a result, it was found that the blast wave velocity was decreased most rapidly as either the distance between the artificial joint and the blast hole was decreased or the angle of the artificial joint was increased. In contrast to the case of no artificial joint, the amount of attenuation of the blast wave velocity was considerably large when an artificial joint was present. However, the effect of the number of artificial joint on the attenuation of the blast wave velocity was negligible under the given condition.

Analysis of Research Trends in the Rock Blasting Field Using Co-Occurrence Keyword Analysis (동시출현 핵심단어 분석을 활용한 암반발파 분야의 연구 동향 분석)

  • Kim, Minju;Kwon, Sangki
    • Explosives and Blasting
    • /
    • v.40 no.1
    • /
    • pp.1-16
    • /
    • 2022
  • In order to develop effective and safe blasting techniques or to introduce foreign advanced blasting techniques to domestic industry, the analysis of research trend in blasting field in the world is essential. In generally, such a research trend analysis was carried out for limited number of published papers. In this study, a bibliometric analysis was performed using VOSviewer for the overall papers published in international journals to figure out the variation of research trend in blasting area. From the keyword analysis, it was found that the number of published papers and the number of overall keywords was limited in the 2000s. Since 2010, the number of published papers was increased rapidly and the keywords were diversified with the introduction of artificial intelligence(AI). The keyword analysis for 2017~2021 showed that various hybrid AI techniques were actively applied in the evaluation of blasting effect.