• 제목/요약/키워드: articulated rigid body model

검색결과 8건 처리시간 0.016초

충돌 안전도 해석을 위한 $5^{th}$ percentile 성인 여성 유한요소 모델 개발 - Part I 다물체 동력학 모델 개발 (Development of $5^{th}$ percentile female finite Element Model for Crashworthiness Simulation - Part I Articulated Rigid Body Model)

  • 나상진;최형연;이진희
    • 대한의용생체공학회:의공학회지
    • /
    • 제25권4호
    • /
    • pp.277-282
    • /
    • 2004
  • 자동차 충돌 시 신체의 크기가 작은 여성 승객의 거동 및 상해 기구를 조사하기 위하여 5% percentile의 여성 유한 요소 모델을 개발하였다. 본 모델은 작은 신체 여성의 형상을 대표하는 분절된 강체와 해부학적으로 상세하게 묘사된 내부 요소들로 구성되어 진다. 분절된 강체 모델은 상세한 골격 및 장기 등의 플랫폼 역할을 수행하며 또한 작은 여성 승객의 전체적인 운동역학을 표현하기도 한다. 본 논문에서는 분절된 강체 모델의 체형 구성 및 유한요소 구조 등에 대한 자세한 내용이 모델의 검증과 함께 소개되어 진다. 모델링의 후반부 즉 작은 여성의 해부학적으로 상세한 내부 요소는 연이은 part II 논문에서 다루게 된다.

충돌 안전도 해석을 위한 $5^{th}$ percentile 성인 여성 유한요소 모델 개발 - Part II 신체 부위 별 상세 모델 개발 (Development of $5^{th}$ percentile female finite Element Model for Crashworthiness Simulation - Part II Detail Modeling of Internal Components)

  • 나상진;최형연;이진희
    • 대한의용생체공학회:의공학회지
    • /
    • 제25권4호
    • /
    • pp.283-288
    • /
    • 2004
  • 본 논문에서는 작은 여성 승객의 충돌해석을 위한 유한요소 모델링에 대하여 Part I 의 분절된 강체 모델에 이어 소개하고 있다. 추가로 모델링 된 상세한 팔, 다리 및 내부 요소들이 분절된 강체 모델에 합체되어 충돌 상해 즉 골절 또는 탈골 등을 예측하게 된다. 이러한 사지 및 내부 요소들의 거동 특성은 확보된 사체 실험 결과와 비교, 검증하였다. 따라서 본 논문에서 제안하고 있는 작은 여성 인체 모델은 충돌 상해 기구학의 조사 및 현존하는 충돌 더미의 생체 충실도를 보완하는데 활용될 수 있다.

착좌시 하지 동작의 생체역학적 모델 (A biomechanical model of lower extremity for seated operators)

  • 황규성;이동춘;최재호
    • 대한인간공학회지
    • /
    • 제11권1호
    • /
    • pp.81-92
    • /
    • 1992
  • A two-dimensional static biochemical model of lower extremity in the seated posture was developed to assess muscular activities of lower extremity required for a variety of foot pedal operations. We found that the double linear optimization method that has been used for modelling articulated body segments does no predict the forces generated by biarticular muscles reasonably, so the revised double linear optimization scheme was used to consider the synergistic effects of biarticular muscles in our model, assuming that the muscle forces are distributed proportionally based on their physiological cross sectional area. The model incorporated three rigid body se- gments with six muscles to represnet lower extremity. For the model validation, three male subjects performed the experiments in which EMG activities of six lower extremity muscles were measured. Predicted muscle forces were compare with the corresponding EMG amplitudes and it showed no statistical difference. The model being developed can be used to design and assess pedal and foot-related tool design.

  • PDF

비선형 최적화기법을 이용한 하지근력 예측 인체역학 모형

  • 황규성;정의승;이동춘
    • 대한인간공학회:학술대회논문집
    • /
    • 대한인간공학회 1994년도 춘계학술대회논문집
    • /
    • pp.124-135
    • /
    • 1994
  • A biomechanical model of lower extremity in seated postures was developed to assess muscular activities of lower extremity involved in a variety of foot pedal operations. It is found that nonlinear optimization method which has been used for modeling the articulated body segments does not predict the forces generated from biarticular muscles reasonably, so the revised nonlinear optimization scheme was employed to consider the synergistic effects of biarticular muscles in the model, assuming that the muscle forces are distributed proportionally based on their physiological cross sectional area and moment arm. The model incorporated four rigid body segments with the nine muscles to represent lower extreimity. For the model valida- tion, three male subjects performed the experiments in which EMG activities of the nine lower extremity muscles were measured. Predicted muscle forces were compared with the corresponding EMG amplitudes and it showed no statistical difference. The developed model can be used to design and to assess the pedals and foot-related equipments design.

  • PDF

시각기반 웜 자세의 기구학적 모형화 (Vision-based Kinematic Modeling of a Worm's Posture)

  • 도용태;탄콕키옹
    • 제어로봇시스템학회논문지
    • /
    • 제21권3호
    • /
    • pp.250-256
    • /
    • 2015
  • We present a novel method to model the body posture of a worm for vision-based automatic monitoring and analysis. The worm considered in this study is a Caenorhabditis elegans (C. elegans), which is popularly used for research in biological science and engineering. We model the posture by an open chain of a few curved or rigid line segments, in contrast to previously published approaches wherein a large number of small rigid elements are connected for the modeling. Each link segment is represented by only two parameters: an arc angle and an arc length for a curved segment, or an orientation angle and a link length for a straight line segment. Links in the proposed method can be readily related using the Denavit-Hartenberg convention due to similarities to the kinematics of an articulated manipulator. Our method was tested with real worm images, and accurate results were obtained.

비선형 최적화기법을 이용한 하지근력 예측 인체공학 모형 (A nonlinear optimization model of lower extremity movement in seated foot operation)

  • 황규성;정의승;이동춘
    • 대한인간공학회지
    • /
    • 제13권2호
    • /
    • pp.65-79
    • /
    • 1994
  • A biomechanical model of lower extremity in seated postures was developed to assess muscular activities of lower extremity involved in a variety of foot pedal operations. The model incorporated four rigid body segments with the twenty-four muscles to represent lower extremity. This study deals with quasi-static movement to investigate dymanic movement effect in seated foot operation. It is found that optimization method which has been used for modeling the articulated body segments does not predict the forces generated from biarticular muscles and antagonistic muscles reasonably. So, the revised nonlinear optimization scheme was employed to consider the synergistic effects of biarticular muscles and the antagonistic muscle effects from the stabilization of the joint. For the model validation, three male subjects performen the experiments in which EMG activities of the nine lower extremity muscles were measured. Predicted muscle forces were compared with the corresponding EMG amplitudes and it showed no statistical difference. For the selection of optimal seated posture, a physiological meaningful criterion for muscular load sharing developed.

  • PDF

굴절차량에 대한 조향알고리즘 개발 및 검증 (Development and Verification of the Steering Algorithm for Articulated Vehicles)

  • 문경호;이수호;목재균;박태원
    • 한국철도학회논문집
    • /
    • 제11권3호
    • /
    • pp.225-232
    • /
    • 2008
  • 축간거리가 긴 트럭이나 굴절차량과 같이 차량이 길이가 길고 2량 이상 편성된 차량은 회전반경을 줄여 원활하게 곡선을 주행할 수 있도록 전 차륜 조향방식(AWS)을 적용한다. 굴절차량에 도입된 방법은 네덜란드 APTS사의 Phileas 차량이 유일하며 자동으로 운전하기 위한 제어방법에 대한 논문은 발표되었지만 수동으로 조향되어 운전되는 경우에 대한 알고리즘은 소개되거나 공개되어지지 않았다. 따라서 본 연구에서 네덜란드의 APTS사의 차량에 대한 수동운전시의 조향장치 특성을 분석하고 새로운 알고리즘을 제안하였다. 또한 개발된 알고리즘을 상용 동역학 프로그램인 ADAMS를 이용하여 적용성을 알아보았다.

A Biomechanical Model of Lower Extremity Movement in Seated Foot Operation

  • Kyu-Sung Hwang
    • 산업경영시스템학회지
    • /
    • 제23권60호
    • /
    • pp.37-46
    • /
    • 2000
  • A biomechanical model of lower extremity in seated postures was developed to assess muscular activities of lower extremity involved in a variety of foot pedal operations. The model incorporated four rigid body segments with the twenty-four muscles to represent lower extremity This study deals with quasi-static movement to investigate dynamic movement effect in seated foot operation. It is found that optimization method which has been used for modeling the articulated body segments does not predict the forces generated from biarticular muscles and antagonistic muscles reasonably. So, the revised nonlinear optimization scheme was employed to consider the synergistic effects of biarticular muscles and the antagonistic muscle effects from the stabilization of the joint. For the model validation, three male subjects performed the experiments in which EMG activities of the nine lower extremity muscles were measured. Predicted muscle forces were compared with the corresponding EMG amplitudes and it showed no statistical difference. For the selection of optimal seated posture, a physiological meaningful criterion was developed for muscular load sharing developed. For exertion levels, the transition point of type F motor unit of each muscle is inferred by analyzing the electromyogram at the seated postures. Also, for predetermined seated foot operations exertion levels, the recruitment pattern is identified in the continuous exertion, by analyzing the electromyogram changes due to the accumulated muscle fatigue.

  • PDF