• Title/Summary/Keyword: article 25

Search Result 624, Processing Time 0.04 seconds

Compressed Sensing Based Dynamic MR Imaging: A Short Survey (Compressed Sensing 기법을 이용한 Dynamic MR Imaging)

  • Jung, Hong;Ye, Jong-Chul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.5
    • /
    • pp.25-31
    • /
    • 2009
  • The recently developed sampling theory, "compressed sensing" is gathering huge interest in MR reconstruction area because of its feasibility of high spatio-temporal resolution of dynamic MRI which has been limited in conventional methods based on Nyquist sampling theory. Since dynamic MRI usually has high redundant information along temporal direction, this can be very sparsely represented in most of cases. Therefore, compressed sensing that exploits the sparsity of unknown images can be effectively applied in most of dynamic MRI. This review article briefly introduces currently proposed compressed sensing based dynamic MR imaging algorithms and other methods exploiting sparsity. By comparing them with conventional methods, you may have insight how the compressed sensing based methods can impact nearly every area of clinical dynamic MRI.

Review of characteristics of the isotonic combination: Importance of eccentric training (등장성 수축 결합기법의 특성에 대한 고찰 - 원심성 훈련의 중요성 -)

  • Kim, Mi-hyun;Bae, Sung-soo
    • PNF and Movement
    • /
    • v.2 no.1
    • /
    • pp.25-33
    • /
    • 2004
  • Purpose : The purpose of this article is to summarize the characteristics of isotonic combination. Method : Some studies of the motor unit activation patterns during isometric, concentric, and eccentric actions, neural strategies in the control of muscle force, and concentric versus combined concentric-eccentric training were reviewed. Results & Conclusions : Eccentric torque may be relatively higher than concentric torque for two potential reasons: 1) stretch responses in the antagonist are not elicited to restrain the motion as can occur concentrically and 2) stretch responses in the agonist may augment eccentric torque production. Concentric-eccentric training has a greater influence on functional capacity than that of concentric training. Both maximal force and average force throughout the motion were significantly higher when the dynamic action was started with preactivation as compared to the mode without preactivation. The peak torques observed during the concentric phase of the eccentric-concentric muscle actions were higher than those noted in the pure concentric contraction.

  • PDF

The Research on Applying FMEA to Evaluate the Safety of Tangible Game - Focusing on Wii Accident Cases - (FMEA를 활용한 체감형게임 안전성 평가모델에 관한 연구 - wii 사고사례를 중심으로 -)

  • Kim, Woo-Ri;Ryu, Seoung-Ho
    • Journal of Korea Game Society
    • /
    • v.10 no.3
    • /
    • pp.25-35
    • /
    • 2010
  • This paper researched the possibility of applying FMEA that estimates and eliminates the failure modes into the measurement of tangible game's safety. Tangible game with actuation makes unexpected accidents for the game users. And this article tried to give risk priority number to 2 categories, game device and physical injuries using FMEA method. The result showed that TV and Hand laceration and/or bruise were revealed as the most risky factors among the others. In conclusion, it is suggested that FMEA can present integrated, quantitative and coherent measurement for the safety of tangible game.

Anatomy and Physiology in Human Circadian Rhythms (인체 일주기리듬의 해부학 및 생리학)

  • Sohn, Chang-Ho
    • Sleep Medicine and Psychophysiology
    • /
    • v.5 no.1
    • /
    • pp.1-11
    • /
    • 1998
  • Chronobiology is the area of medicine that is, how time-related event shape our daily biologic responses and apply to any aspect of medicine with regard to altering pathophysiology and treatment response. In mammals, there are several evidences that prove suprachiasmatic nuclei(SCN) is the major circadian pacemaker and the circadian rhythm influences so many biological aspects of an living organism such as rest-activity, thermoregulation, reproduction, and endocrine system. In case of human beings, there had been little information of circadian system. That may be due to the experimental, technical difficulties to study but also to the fact that human has the more complex environments that may alter the circadina rhythm like the artificial light, many socio-cultural aspects and so forth. However, several reports of these days indicate human's circadian system is composed of two or more circadian oscillators and SCN is the major circadian oscillator among them like the other mammals. Free-running circadinan period of mankind is about 24 hours rather than about 25 hours, and rest-activity rhythm is polymodal like other species. In addition to that, human may have capcities to change the circadian rhythm as the seasonal changes of daynight schedule. In this article, the author will summarize recent progress of anatomy and physiology of the circadian clock mechanism in humans.

  • PDF

A Decomposition Approach for Fixed Channel Assignment Problems in Large-Scale Cellular Networks

  • Jin, Ming-Hui;Wu, Eric Hsiao-Kuang;Horng, Jorng-Tzong
    • Journal of Communications and Networks
    • /
    • v.5 no.1
    • /
    • pp.43-54
    • /
    • 2003
  • Due to insufficient available bandwidth resources and the continuously growing demand for cellular communication services, the channel assignment problem has become increasingly important. To trace the optimal assignment, several heuristic strategies have been proposed. So far, most of them focus on the small-scale systems containing no more than 25 cells and they use an anachronistic cost model, which does not satisfy the requirements ity. Solving the small-scale channel assignment problems could not be applied into existing large scale cellular networks' practice. This article proposes a decomposition approach to solve the fixed channel assignment problem (FCAP) for large-scale cellular networks through partitioning the whole cellular network into several smaller sub-networks and then designing a sequential branch-and-bound algorithm that is made to solve the FCAP for them sequentially. The key issue of partition is to minimize the dependences of the sub-networks so that the proposed heuristics for solving smaller problems will suffer fewer constraints in searching for better assignments. The proposed algorithms perform well based on experimental results and they were applied to the Taiwan Cellular Cooperation (TCC) in ChungLi city to find better assignments for its network.

Effects of Electrical Stimulation on Muscle functional Change (전기자극이 근기능 변화에 미치는 효과)

  • Joung, Ho-Bal;Ko, Tae-Sung
    • Journal of Korean Physical Therapy Science
    • /
    • v.9 no.4
    • /
    • pp.105-112
    • /
    • 2002
  • When any damage or disease occurs, muscular strength and muscular endurance are lowered, and thus, if one is able to be restored from the damage or the disease, appropriate stimulus is required, since the muscles have to restore their proper functions. For such stimulus, the way of exercising and the way using electric stimulus are used in physical therapy. In order to examine the change in muscular strength, muscular endurance and girth of limbs for Biceps brachii, according to the lands of stimulus, in this article a total of 42 healthy male and female adults in their twenties were randomly sampled, and a series of tests were conducted for 6 weeks, for 15 minutes per once, 3 times per week, respectively, dividing them into the group for RUS(Russian Current Stimulation), PRE(Progressive Resistive Exercise) and P+R(RUS + PRE). The findings showed that the change in muscular strength was most significant as for the group for P+R, since it increased from $62.12{\pm}25.30$ before experiment to $95.78{\pm}34.07$ after 6 weeks: the change in muscular endurance was most significant as for the group for P+R, since it increased from $17.57{\pm}6.63$ to $42.86{\pm}10.24$; and the change in the girth of limbs was slightly significant only in the group for P+R, and the remaining two groups showed no significance.

  • PDF

A Study on Risk Perception and Policy Implication : A Psychometric Analysis of Korean Perception for Technological Risks (위험인식의 특성과 의미: 한국인의 기술위험 인지도에 대한 Psychometric 분석)

  • Chung, Ik Jae
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.1
    • /
    • pp.80-85
    • /
    • 2014
  • A survey of risk perception in South Korea was conducted in 2007 to evaluate relative riskiness of typical industrial and technological risks. This article summarizes the characteristics of risk perception using psychometric analyses. The survey with a sample size of 1,194 reviews the perceived level of 25 risk items in the areas of transportation, chemicals, environment, industry, nuclear power generation, and newly-introduced risks. Six categories of risk identified by a factor analysis show that the level of perceived risk does not correspond to the statistical level. Psychometric analyses including voluntariness, severity, effect manifestation, exposure pattern, controllability, familiarity, benefit and necessity demonstrate that voluntary, familiar and immediate risks are perceived as less risky than involuntary, unfamiliar and delayed ones. Risk communication is critical in reducing the discrepance between objective and subjective level of risk. However, the amount of risk information does not always justify a successful risk communication. A safety policy, risk communication strategy in particular, should take into account diverse dimensions of risk reviewed by psychometric analyses in the study. Social policy toward safety can be improved by integrating policy, human, and social factors as well as technological advances.

Molecular dynamics simulations of the coupled effects of strain and temperature on displacement cascades in α-zirconium

  • Sahi, Qurat-ul-ain;Kim, Yong-Soo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.907-914
    • /
    • 2018
  • In this article, we conducted molecular dynamics simulations to investigate the effect of applied strain and temperature on irradiation-induced damage in alpha-zirconium. Cascade simulations were performed with primary knock-on atom energies ranging between 1 and 20 KeV, hydrostatic and uniaxial strain values ranging from -2% (compression) to 2% (tensile), and temperatures ranging from 100 to 1000 K. Results demonstrated that the number of defects increased when the displacement cascade proceeded under tensile uniaxial hydrostatic strain. In contrast, compressive strain states tended to decrease the defect production rate as compared with the reference no-strain condition. The proportions of vacancy and interstitial clustering increased by approximately 45% and 55% and 25% and 32% for 2% hydrostatic and uniaxial strain systems, respectively, as compared with the unstrained system, whereas both strain fields resulted in a 15-30% decrease in vacancy and interstitial clustering under compressive conditions. Tensile strains, specifically hydrostatic strain, tended to produce larger sized vacancy and interstitial clusters, whereas compressive strain systems did not significantly affect the size of defect clusters as compared with the reference no-strain condition. The influence of the strain system on radiation damage became more significant at lower temperatures because of less annealing than in higher temperature systems.

A Case of Malignant Peripheral Nerve Sheath Tumor with Neurofibromatosis Type 1

  • Choi, Sang Kyu;Kim, Cheol Keun;Kim, Soon Heum;Jo, Dong In
    • Archives of Reconstructive Microsurgery
    • /
    • v.26 no.1
    • /
    • pp.23-25
    • /
    • 2017
  • The malignant peripheral nerve sheath tumor (MPNST) originates from neurofibromatosis type 1 (NF1). Because NF1 patients have many accompaniments with growth of additional masses, they usually overlook potential malignant changes in their masses. Our patient had two growing mass near the left elbow for several months; however, she ignored these masses until 7 days prior to writing this article, at which time they began bleeding. Traditionally, sarcoma including MPNST treatment consisted of amputation of the involved extremity. However, treatment now consists of surgical resection with adjuvant therapy. Therefore, we conducted resection of the mass and subsequent coverage with a local advancement flap. We believe that the most effective treatment for MPNST is early diagnosis and fast surgery, coupled with notification that there is always potential for malignant change in NF1 patient's masses.

FUNDAMENTALS AND RECENT DEVELOPMENTS OF REACTOR PHYSICS METHODS

  • CHO NAM ZIN
    • Nuclear Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.25-78
    • /
    • 2005
  • As a key and core knowledge for the design of various types of nuclear reactors, the discipline of reactor physics has been advanced continually in the past six decades and has led to a very sophisticated fabric of analysis methods and computer codes in use today. Notwithstanding, the discipline faces interesting challenges from next-generation nuclear reactors and innovative new fuel designs in the coming. After presenting a brief overview of important tasks and steps involved in the nuclear design and analysis of a reactor, this article focuses on the currently-used design and analysis methods, issues and limitations, and current activities to resolve them as follows: (1) Derivation of the multi group transport equations and the multi group diffusion equations, with representative solution methods thereof. (2) Elements of modem (now almost three decades old) diffusion nodal methods. (3) Limitations of nodal methods such as transverse integration, flux reconstruction, and analysis of UO2-MOX mixed cores. Homogenization and related issues. (4) Description of the analytic function expansion nodal (AFEN) method. (5) Ongoing efforts for three-dimensional whole-core heterogeneous transport calculations and acceleration methods. (6) Elements of spatial kinetics calculation methods and coupled neutronics and thermal-hydraulics transient analysis. (7) Identification of future research and development areas in advanced reactors and Generation-IV reactors, in particular, in very high temperature gas reactor (VHTR) cores.