• Title/Summary/Keyword: arterial contraction

Search Result 100, Processing Time 0.031 seconds

Inhibitory effect of propofol on endothelium-dependent relaxation and blood pressure lowering in rats (흰쥐에서 혈관내피 의존적인 혈관이완과 혈압하강에 대한 propofol의 억제 효과)

  • Kim, Shang-Jin;Kim, Jeong-gon;Joe, Sung-gun;Kang, Hyung-sub;Kim, Jin-shang
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.3
    • /
    • pp.357-366
    • /
    • 2004
  • We studied the effect of propofol (PPF) on the endothelium-dependent vascular responses in isolated rat thoracic aorta. In aortic rings with endothelium, PPF inhibited the phenylephrine (PE)-induced contraction in a concentration-dependent manner. In PE-precontracted preparations, PPF attenuated the endothelium-dependent relaxation by acetylcholine but not by A23187. And PPF did not attenuate the endothelium-independent relaxation by sodium nitroprusside (SNP). The relaxation induced by acetylcholine in PE-precontracted aortic rings was significantly augmented by zaprinast, a cGMP-specific phosphodiesterase inhibitor, and this augmentation was inhibited by PPF. Although SNP-induced relaxation was significantly augmented by zaprinast, this augmentation was not inhibited by PPF. In preparations preconstricted with PE, the PPF-induced relaxation was inhibited by atropine. In addition, PPF attenuated the vasorelaxation by phosphodiesterase inhibitors (IBMX, Ro20-1724 or zaprinast except milrinone). In vivo, the infusion of acetylcholine and SNP showed decreased arterial blood pressure in rats. The pre-injection of PPF inhibited the acetylcholine-induced blood pressure lowering, but not the SNP-induced blood pressure lowering. These results suggest that PPF can attenuate in part the acetylcholine-induced vasorelaxation and blood pressure lowering through the inhibition of the acetylcholine receptor-mediated endothelium-derived relaxing factor by acting on endothelium. It is considered that the inhibitory effect of PPF on the vasorelaxation is due to the decreased level of cGMP which can be attributed to the inhibition of the muscarinic receptor and/or receptor-G-protein interaction.

Dexmedetomidine inhibits vasoconstriction via activation of endothelial nitric oxide synthase

  • Nong, Lidan;Ma, Jue;Zhang, Guangyan;Deng, Chunyu;Mao, Songsong;Li, Haifeng;Cui, Jianxiu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.5
    • /
    • pp.441-447
    • /
    • 2016
  • Despite the complex vascular effects of dexmedetomidine (DEX), its actions on human pulmonary resistance arteries remain unknown. The present study tested the hypothesis that DEX inhibits vascular tension in human pulmonary arteries through the endothelial nitric oxide synthase (eNOS) mediated production of nitric oxide (NO). Pulmonary artery segments were obtained from 62 patients who underwent lung resection. The direct effects of DEX on human pulmonary artery tension and changes in vascular tension were determined by isometric force measurements recorded on a myograph. Arterial contractions caused by increasing concentrations of serotonin with DEX in the presence or absence of L-NAME (endothelial nitric oxide synthase inhibitor), yohimbine (${\alpha}_2$-adrenoceptor antagonist) and indomethacin (cyclooxygenase inhibitor) as antagonists were also measured. DEX had no effect on endothelium-intact pulmonary arteries, whereas at concentrations of $10^{-8}{\sim}10^{-6}mol/L$, it elicited contractions in endothelium-denuded pulmonary arteries. DEX (0.3, 1, or $3{\times}10^{-9}mmol/L$) inhibited serotonin-induced contraction in arteries with intact endothelium in a dose-dependent manner. L-NAME and yohimbine abolished DEX-induced inhibition, whereas indomethacin had no effect. No inhibitory effect was observed in endothelium-denuded pulmonary arteries. DEX-induced inhibition of vasoconstriction in human pulmonary arteries is mediated by NO production induced by the activation of endothelial ${\alpha}_2$-adrenoceptor and nitric oxide synthase.

The convergence effect of phenylephrine, isoprenaline and prazosin on vascular contractility (혈관 수축성에 대한 phenylephrine, isoprenaline 및 prazosin의 융합성 조절 효과)

  • Je, Hyun Dong;Min, Young Sil
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.4
    • /
    • pp.119-125
    • /
    • 2022
  • In the study, we endeavored to investigate the effect of phenylephrine, isoprenaline and prazosin on the tissue-specific vascular contractility and to determine the mechanism involved. There were few reports addressing the question whether thin or thick filament modulation is included in phenylephrine, isoprenaline and prazosin-induced regulation. We hypothesized that isoprenaline and prazosin play a role in tissue-dependent regulation of vascular contractility. Denuded arterial muscles of Sprague-Dawley male rats were suspended in organ baths and isometric tensions were transduced and recorded using isometric transducers and an automatic data acquisition system. Interestingly, sustained continuous contraction of thoracic and abdominal aorta. Furthermore, isoprenaline and prazosin together with phenylephrine inhibited transiently and persistently vasoconstriction of thoracic and abdominal aorta suggesting that additional mechanisms (e.g. decreased receptor density, chemical interaction, postreceptor signaling or distribution of agonists) might be included in the modulation of vascular contractility.

The Effect of Silymarin and Ethanol Intake on Vascular Contractility (엉겅퀴 유래 Silymarin의 단독 및 알코올 병용 시 혈압 조절 효과)

  • Je, Hyun Dong;Min, Young Sil
    • Journal of Industrial Convergence
    • /
    • v.20 no.7
    • /
    • pp.131-137
    • /
    • 2022
  • In the study, we endeavored to assess the convergence effect of Silybum marianum-derived silymarin and epidemiologically-correlated alcohol intake on vascular contractility and to determine the mechanism involved. There were few reports addressing the question whether thin or thick filament modulation is included in ethanol and silymarin-induced regulation. We hypothesized that ethanol at a low concentration and silymarin play a role in agonist-dependent regulation of vascular contractility. Denuded arterial muscles of Sprague-Dawley male rats were suspended in organ baths and isometric tensions were transduced and recorded using isometric transducers and an automatic data acquisition system. Interestingly, both silymarin and ethanol didn't encourage silymarin alone-induced inhibition in agonists-induced contraction suggesting that endothelial nitric oxide synthesis might be involved in ethanol or silymarin-induced modulation of vascular contractility and additional pathways besides endothelial nitric oxide synthesis such as ROCK inactivation might be involved in the silymarin-induced modulation of vascular contractility.

A Study of Endothelium-dependent Pulmonary Arterial Relaxation and the Role of Nitric oxide on Acute Hypoxic Pulmonary Vasoconstriction in Rats (흰쥐 폐동맥의 내피세포의존성 혈관이완과 급성 저산소성 폐동맥수축에서 산화질소의 역할)

  • In, Kwang-Ho;Lee, Jin-Goo;Cho, Jae-Youn;Shim, Jae-Jung;Kang, Kyung-Ho;Yoo, Se-Hwa
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.3
    • /
    • pp.231-238
    • /
    • 1994
  • Backgroud: Since the demonstration of the fact that vascular relaxation by acetylcholine(Ach) results from the release of relaxing factor from the endothelium, the identity and physiology of this endothelium-derived relaxing factor(EDRF) has been the target for many researches. EDRF has been identified as nitric oxide(NO). With the recent evidences that EDRF is an important mediator of vascular tone, there have been increasing interests in defining the role of the EDRF as a potential mediator of hypoxic pulmonary vasoconstriction. But the role of EDRF in modulating the pulmonary circulation is not compeletely clarified. To investigate the endothelium-dependent pulmonary vasodilation and the role of EDRF during hypoxic pulmonary vasoconstriction, we studied the effects of $N^G$-monomethyl-L-arginine(L-NMMA) and L-arginine on the precontracted pulmonary arterial rings of the rat in normoxia and hypoxia. Mothods: The pulmonary arteries of male Sprague Dawley(300~350g) were dissected free of surrounding tissue, and cut into rings. Rings were mounted over fine rigid wires, in organ chambers filled with 20ml of Krebs solution bubbled with 95 percent oxygen and 5 percent carbon dioxide and maintained at $37^{\circ}C$. Changes in isometric tension were recorded with a force transducer(FT.03 Grass, Quincy, USA) Results: 1) Precontraction of rat pulmonry artery with intact endothelium by phenylephrine(PE, $10^{-6}M$) was relaxed completely by acetylcholine(Ach, $10^{-9}-10^{-5}M$) and sodium nitroprusside(SN, $10^{-9}-10^{-5}M$), but relaxing response by Ach in rat pulmonary artery with denuded endothelium was significantly decreased. 2) L-NMMA($10^{-4}M$) pretreatment inhibited Ach($10^{-9}-10^{-5}M$)-induced relaxation, but L-NMMA ($10^{-4}M$) had no effect on relaxation induced by SN($10^{-9}-10^{-5}M$). 3) Pretreatment of the L-arginine($10^{-4}M$) significantly reversed the inhibition of the Ach ($10^{-9}-10^{-5}M$)-induced relaxation caused by L-NMMA($10^{-4}M$) 4) Pulmonary arterial contraction by PE($10^{-6}M$) was stronger in hypoxia than normoxia but relaxing response by Ach($10^{-9}-10^{-5}M$) was decreased, 5) With pretreatment of L-arginine($10^{-4}M$), pulmonary arterial relaxation by Ach($10^{-9}-10^{-5}M$) in hypoxia was reversed to the level of relaxation in normoxia. Conclusion: It is concluded that rat pulmonary arterial relaxation by Ach is dependent on the intact endothelium and is largely mediated by NO. Acute hypoxic pulmonary vasoconstriction is related to the suppression on NO formation in the vascular endothelium.

  • PDF

The Vasodilating Mechanism of Atrial Natriuretic Peptide in 2-kidney 1 Clip Renovascular Hypertensive Rats (2-kidney 1 clip 신혈관성 고혈압흰쥐에서의 심방이뇨??????타이드의 혈관이완작용의 기전)

  • Jung, Jin-Young;Ahn, Young-Chul;Kim, Hun-Sik;Koh, Gou-Young;Ahn, Hee-Yul;Kim, Myung-Suk
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.1
    • /
    • pp.51-56
    • /
    • 1996
  • The objectives of this study is to find out mechanism of vasodilating effects of ANP in 2K-1C renovascular hypertensive rat aorta and to compare with those of normotensive rat aorta. In 2K-1C renovascular hypertensive rat, average arterial blood pressure and plasma renin activity were higher than in normotensive rat. In 2K-1C renovascular hypertensive rat aorta, NE sensitivity was more increased and maximal contraction of aorta by NE was higher than those of normotensive rat aorta. ANP inhibited NE-induced contraction in both 2K-1C renovascular hypertensive and normotensive rat aorta, concentration-dependently. However, ANP was less effective for relaxing NE-induced contraction in 2K-1C renovascular hypertensive rat aorta than in normotensive rat aorta. ANP inhibited $^{45}Ca^{2+}$ uptake induced by NE in both 2K-1C renovascular hypertensive and normotensive rat aorta. From these results. inhibition of $Ca^{2+}$ influx may be one of the vasodilating mechanism of ANP in 2K-1C renovascular hypertensive rat aorta. Although the potency of ANP in relaxing NE-induced contractions was attenuated, the efficacy of ANP was not changed in 2K-1C renovascular hypertensive rat aorta compared with that of ANP in normotensive rat aorta. Abbreviations: ANP, Atrial natriuretic peptide; 2K-1C, 2-kidney 1 clip; NE, norepinephrine; SHR, Spontaneously hypertensive rat; DOC, Deoxycorticosterone; EDTA, Ethylenediaminetetra-acetic acid; PSS, Physiological salt solution; TRIS, tris(hydroxymethyl) aminomethane

  • PDF

The Functional Effects of Fermented Pine Needle Extract (솔잎착즙액의 발효에 따른 기능성 효과)

  • Park, Ga-Young;Li, Hongxian;Hwang, In-Deok;Cheong, Hyeon-Sook
    • KSBB Journal
    • /
    • v.21 no.5
    • /
    • pp.376-383
    • /
    • 2006
  • Pine needle(Pinus densiflora sieb, et zucc) extract has been used to improve cardiovascular disorders, detoxification of nicotine, the infirmities of age and curing diseases of unidentified symptoms. It has various useful components including amino acids, vitamin C, terpenoids and chlorophyll. In this study we have identified 8 different yeast strains that are developed spontaneously causing self fermentation in the extract. The self-fermented pine extract(SFPE) inhibited the growth of some bacterial strains like E. coli, Bacillus subtilis and Staphylococcus aureus. The SFPE($0.2{\mu}{\ell}/ml{\sim}0.3{\mu}{\ell}/ml$) showed 90% NBT superoxide scavenging activities which is similar for all tested samples of different ages. The 7 years old SFPE(0.15 mg/ml and 0.3 mg/ml) caused relaxation of spontaneous contraction and relaxation rhythm of thoracic arterial tissues from rat. Therefore, SFPE has useful effects such as antibacterial, antioxidant and improved blood circulation and could be a good source of functional food development.

Pharmacological Evidence that Cromakalim Inhibits $Ca^{2+}$ Release from Intracellular Stores in Porcine Coronary Artery

  • Rhim, Byung-Yong;Hong, Sun-Hwa;Kim, Chi-Dae;Lee, Won-Suk;Hong, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.1
    • /
    • pp.27-34
    • /
    • 1997
  • In the present study, it was aimed to further indentify the intracellular action mechansm of cromakalim and levcromakalim in the porcine coronary artery. In intact porcine coronary arterial strips loaded with fura-2/AM, acetylcholine caused an increase in intracellular free $Ca^{2+}$ $([Ca^{2+}]_i)$ in association with a contraction in a concentration-dependent manner. Cromakalim (1 ${\mu}M$) caused a reduction in acetylcholine-induced increased $[Ca^{2+}]_i$ not only in the mormal physiological salt solution (PSS) but also in $Ca^{2+}$-free PSS (containing 1 mM EGTA). In the skinned strips prepared by exposure of tissue to 20 .${\mu}M$ B-escin, inositol 1,4,5-trisphosphate ($IP_3$) evoked an increase in $[Ca^{2+}]_i$, but it was without effect on the intact strips. The $IP_3$-induced increase in $[Ca^{2+}]_i$ was inhibited by cromakalim by 78% and levcromakalim by 59% (1 .${\mu}M$, each). Pretreatment with glibenclamide (a blocker of ATP-sensitive $K^+$ channels, 10 .${\mu}M$) and apamin (a blocker of small conductance $Ca^{2+}$-activated $K^+$ channels, 1 .${\mu}M$) strongly blocked the effect of cromakalim and levcromakalim. However, charybdotoxin (a blocker of large conductance $Ca^{2+}$-activated $K^+$ channels, 1 .${\mu}M$) was without effect. In addition, cromakalim inhibited the $GTP{\gamma}S$ (100 .${\mu}M$, non-hydrolysable analogue of GTP)-induced increase in $[Ca^{2+}]_i$. Based on these results, it is suggested that cromakalim and levcromakalim exert a potent vasorelaxation, in part, by acting on the $K^+$ channels of the intracellular sites (e.g., sarcoplasmic reticulum membrane), thereby, resulting in decrease in release of $Ca^{2+}$ from the intracellular storage site.

  • PDF

Vasorelaxing Mechanism of Crude Saponin of Korea Red Ginseng in the Resistance-sized Mesenteric Artery of Rat

  • Kim, Shin-Hye;Park, Hyung-Seo;Lee, Mee-Young;Oh, Young-Sun;Kim, Se-Hoon
    • Journal of Ginseng Research
    • /
    • v.26 no.1
    • /
    • pp.1-5
    • /
    • 2002
  • It has been well known that Korea red ginseng has an antihypertensive effect. The antihypertensive effect may be due to its ability to change the peripheral resistance. Change of vascular tone in the resistance-sized artery contribute to the peripheral resistance, thereby regulate the blood pressure. Therefore, we investigated to clarify the vasorelaxing mechanism induced by crude saponin of Korea red ginseng in the resistance-sized mesenteric artery of rats. The resistance-sized mesenteric artery was isolated and cut into a ring. The ring segment was immersed in HEPES-buffered solution and its isometric tension was measured using myograph force-displacement transducer. Crude saponin of ginseng relaxed the mesenmetric arterial rings precontracted with norepinephrine (3$\mu$M) in dose-dependent manner (0.01 mg/㎖ -1 mg/㎖. The relaxation by crude saponin was smaller in endothelium-intact preparation than that in endothelium-denuded preparation. The contraction induced by A23187 or phorbol 12,13-dibutyrate was not affected by crude saponin of ginseng. The vasorelaxing effect of crude saponin of ginseng was significantly attenuated by the increase of the extracellular K$\^$+/ concentration. Crude saponin-induced vasorelaxation was not affected by tetraethylammonium (1 mM), glybenclamide (10$\mu$M), and 4-aminopyridine (0.1 mM) in these preparations. Ba$\^$2+/(10$\mu$M ∼100$\mu$M) markedly reduced the crude saponin-induced vasorelakation dose-dependently. From the above results, we suggest that crude saponin of ginseng may stimulate K$\^$+/ efflux and hyperpolarize the membrane, thereby cause the vasorelaxation in the resistance-sized mesenteric artery of rats.

The agonistic action of URO-K10 on Kv7.4 and 7.5 channels is attenuated by co-expression of KCNE4 ancillary subunit

  • Lee, Jung Eun;Park, Christine Haewon;Kang, Hana;Ko, Juyeon;Cho, Suhan;Woo, JooHan;Chae, Mee Ree;Lee, Sung Won;Kim, Sung Joon;Kim, Jinsung;So, Insuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.6
    • /
    • pp.503-516
    • /
    • 2020
  • KCNQ family constitutes slowly-activating potassium channels among voltage-gated potassium channel superfamily. Recent studies suggested that KCNQ4 and 5 channels are abundantly expressed in smooth muscle cells, especially in lower urinary tract including corpus cavernosum and that both channels can exert membrane stabilizing effect in the tissues. In this article, we examined the electrophysiological characteristics of overexpressed KCNQ4, 5 channels in HEK293 cells with recently developed KCNQ-specific agonist. With submicromolar EC50, the drug not only increased the open probability of KCNQ4 channel but also increased slope conductance of the channel. The overall effect of the drug in whole-cell configuration was to increase maximal whole-cell conductance, to prolongate the activation process, and left-shift of the activation curve. The agonistic action of the drug, however, was highly attenuated by the co-expression of one of the β ancillary subunits of KCNQ family, KCNE4. Strong in vitro interactions between KCNQ4, 5 and KCNE4 were found through Foster Resonance Energy Transfer and co-immunoprecipitation. Although the expression levels of both KCNQ4 and KCNE4 are high in mesenteric arterial smooth muscle cells, we found that 1 μM of the agonist was sufficient to almost completely relax phenylephrine-induced contraction of the muscle strip. Significant expression of KCNQ4 and KCNE4 in corpus cavernosum together with high tonic contractility of the tissue grants highly promising relaxational effect of the KCNQ-specific agonist in the tissue.