• Title/Summary/Keyword: arsenic pollution

Search Result 85, Processing Time 0.022 seconds

Monitoring of some heavy metals in oriental animality medicines (동물성 생약에 함유되어 있는 몇 가지 중금속에 대한 실태 조사)

  • Baek, Sunyoung;Chung, Jaeyoen;Lee, Jihye;Park, Kyungsu;Kang, Inho;Kang, Sinjung;Kim, Yunje
    • Analytical Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.201-209
    • /
    • 2009
  • Four heavy metals (Pb, Cd, As, and Hg) in 38 species (total 325 samples) of oriental animality medicines were monitored by inductively coupled plasma-mass spectrometry (ICP-MS) and automatic mercury analyzer (AMA). The detected concentration range of Pb, Cd, As was presented as $0.02{\mu}gkg^{-1}$ $(D.L){\sim}11.29mgkg^{-1}$, $0.01{\mu}gkg^{-1}$ $(D.L){\sim}2.50 mgkg^{-1}$, $0.12{\mu}gkg^{-1}$ $(D.L){\sim}5.27mgkg^{-1}$, respectively. In case of Hg, it the concentration range was $0.01{\sim}77.11mgkg^{-1}$ except one sample which exceeded detection limit. In all samples of Amydae Carapax and Gallnut, it was not detected over the maximum residue limits of metals. Pb is in charge of the greatest portion of contamination in 22 species of animality medicines, and in case of Hg, 54.46% of total samples were over the maximum residue limits. Therefore, environmental levels of Pb and Hg are needed to continue the researches and the studies for tracking pollution source are required.

Examination of Soil Contamination Status and Improvement Strategies within Urban Development Projects (도시개발사업 내 토양 오염 현황과 개선 방안 고찰)

  • Heo, Sujung;Lee, Dong-Kun;Kim, Eunsub;Jeon, Seong-Woo;Jin, Zhiying
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.27 no.3
    • /
    • pp.45-56
    • /
    • 2024
  • Heavy metals emitted from urban development do not decompose in the soil and remain for long periods, continually impacting the environment. Since the mid-1990s, there has been increasing societal concern in South Korea regarding soil contamination, prompting various legislative revisions to reduce pollution. This study utilizes the Environmental Impact Assessment Support System (EIASS) to investigate projects in the metropolitan area that have exceeded the Ministry of Environment's soil contamination concern levels from 1989 to 2022 and to examine improvements in the environmental impact assessment (EIA) process. The results reveal that the average concentrations of nine contaminants-cadmium (Cd), copper (Cu), arsenic (As), mercury (Hg), lead (Pb), hexavalent chromium (Cr6+), zinc (Zn), nickel (Ni), and fluoride (F)-have all increased over the years. Among these, Zn had the highest relative proportion, with 37.5% of the 40 sites exceeding environmental concern levels. Investigation of 19 specific projects at these exceedance sites showed that only 7 had documented analyses of contamination causes and remediation plans, and just one had contracted additional remediation services, though results from these efforts were found to be lacking. Furthermore, since 2019, a significant proportion of these sites were involved in residential developments, likely due to government initiatives in new city development and extensive housing supply plans. This research emphasizes the importance of public disclosure of the processes and outcomes of remediation efforts on historically contaminated soils prior to project development. It discusses improvements to the EIA by reviewing current legislation and international examples. The findings of this study are expected to heighten public awareness about heavy metal contamination and enhance transparency in soil remediation efforts, contributing to sustainable environmental management and development.

Assessment of the Heavy Metal Contamination in Paddy Soils Below Part of the Closed Metalliferous Mine (폐금속광산 하류 논토양의 중금속 오염도 평가)

  • Kim, Min-Kyeong;Hong, Sung-Chang;Kim, Myung-Hyun;Choi, Soon-Kun;Lee, Jong-Sik;So, Kyu-Ho;Jung, Goo-Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.1
    • /
    • pp.6-13
    • /
    • 2015
  • BACKGROUND: Most of the tailings have been left without any management in abandoned metalliferous mines and have become the main source of heavy metal contamination for agricultural soils and crops in the these areas. METHODS AND RESULTS: This experiment was carried out to investigate the assessment of the heavy metal contamination in paddy soils located on downstream of the closed metalliferous mine. The average total concentrations of cadmium (Cd), copper (Cu), lead (Pb), zinc (Zn), and arsenic (As) in paddy soils were 8.88, 56.7, 809, 754, and 37.9 mg/kg, respectively. Specially, the average concentrations of Cd, Pb and Zn were higher than those of warning criteria for soil contamination(4 mg/kg for Cd, 200 mg/kg for Pb, and 300 mg/kg for Zn) in agricultural soil established by Soil Environmental Conservation Act in Korea. The proportions of 0.1 M HCl extractable Cd, Cu, Pb, Zn, and As concentration to total concentration of these heavy metals in paddy soils were 27.7, 21.3, 35.1, 13.8 and 10.5%, respectively. The pollution index of these five metals in paddy soils ranged from 0.42 to 11.92. Also, the enrichment factor (EFc) of heavy metals in paddy soils were in the order as Cd>Pb>Zn>Cu>As, and the enrichment factor in paddy soil varied considerably among the sampling sites. The geoaccumulation index (Igeo) of heavy metals in soils were in the order as Cd>Pb>Zn>Cu>As, specially, the average geoaccumulation index of Cd, Pb, and Zn (Igeo 2.49~3.10) were relatively higher than that of other metals in paddy soils. CONCLUSION: Based on the pollution index, enrichment factor, and geoaccumulation index for heavy metal in paddy soils located on downstream of closed metalliferous mine, the main contaminants are mine waste materials and mine drainage including mine activity.

Characteristics of Geochemical Behaviors of Trace Metals in Drainage from Abandoned Sechang Mine (세창 폐금속광산 수계에서 미량원소의 지구화학적 거동특성 규명)

  • Kang Min-Ju;Lee Pyeong-Koo;Youm Seung-Jun
    • Economic and Environmental Geology
    • /
    • v.39 no.3 s.178
    • /
    • pp.213-227
    • /
    • 2006
  • The geochemical evolution of mine drainage and leachate from waste rock dumps and stream water in Pb-As-rich abandoned Sechang mine area was investigated to elucidate mechanisms of trace metals. Total and sequential extractions were applied to estimate the distribution of trace metals in constituent phases of the waste rocks and to assess the mobility of trace metals according to physicochemical conditions. These discharged waters varied largely in chemical composition both spatially and temporally, and included cases with significant]y low pH (in the range 2.1-3.3), and extremely sulphate (up to 661 mg/l and metal contents (e.g. up to 169 mg/l for Zn, 27 mg/l for As, 3.97 mg/l for Pb, 2.99 mg/l for Cu, and 1.88 mg/l for Cd). Arsenic and heavy metal concentrations at the down-stream of Sechang mine have been decreased nearly to the background level in downstream sites (sites 8 and 16) without any artificial treatments. The oxidation of Fe-sulfides and the subsequent hydrolysis, of Fe(II), with precipitation of poorly crystallized minerals, constituted an efficient mechanism of natural attenuation which reduces considerably the transference of trace metals (i.e. Fe and As) to rivers. The dilution of drainage by mixing with pristine waters provoked an additional decrease of trace metal concentrations and a progressive pH increase. On the other hand, the most soluble cations (i.e. Zn) remained significantly as dissolved solutes until the pH was raised to approximately neutral values. With respect to ecotoxicity, it is likely that the Zn pollution is of particular concern in Sechang mine area. This was confirmed by the sequential extraction experiment, where Zn in wet waste-rock samples occurred predominantly in the exchangeable fraction (65-89% of total), while Pb was the highest in the reducible and carbonate fractions, and Cd, Cu and As in the residual fraction. Pb concentration in the readily available exchangeable fraction (34-48% of total) was dominated for dried waste rock samples. Considering the proportion of metals bound to the exchangeable and carbonate fractions, the comparative mobility of metals probably decreased in the order of Zn>Pb>Cd>As=Cu.

Hydrogeochemistry and Statistical Analysis of Water Quality for Small Potable Water Supply System in Nonsan Area (논산지역 마을상수도 수질의 수리지화학 및 통계 분석)

  • Ko, Kyung-Seok;Ahn, Joo-Sung;Suk, Hee-Jun;Lee, Jin-Soo;Kim, Hyeong-Soo
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.6
    • /
    • pp.72-84
    • /
    • 2008
  • This study was carried out to provide proper management plans for small portable water supply system in the Nonsan area through water quality monitoring, hydrogeochemical investigation and multivariate statistical analyses. Nonsan area is a typical rural area heavily depending on small water supply system for portable usage. Geology of the area is composed of granite dominantly along with metasedimentary rocks, gneiss and volcanic rocks. The monitoring results of small portable water supply system showed that 13-21% of groundwaters have exceeded the groundwater standard for drinking water, which is 5 to 8 times higher than the results from the whole country survey (2.5% in average). The major components exceeding the standard limits are nitrate-nitrogen, turbidity, total coliform, bacteria, fluoride and arsenic. High nitrate contamination observed at southern and northern parts of the study area seems to be caused by cultivation practices such as greenhouses. Although Ca and $HCO_3$ are dominant species in groundwater, concentrations of Na, Cl and $NO_3$ have increased at the granitic area indicating anthropogenic contamination. The groundwaters are divided into 2 groups, granite and metasedimentary rock/gneiss areas, with the second principal component presenting anthropogenic pollution by cultivation and residence from the principal components analysis. The discriminant analysis, with an error of 5.56% between initial classification and prediction on geology, can explain more clearly the geochemical characteristics of groundwaters by geology than the principal components analysis. Based on the obtained results, it is considered that the multivariate statistical analysis can be used as an effective method to analyze the integrated hydrogeochemical characteristics and to clearly discriminate variations of the groundwater quality. The research results of small potable water supply system in the study area showed that the groundwater chemistry is determined by the mixed influence of land use, soil properties, and topography which are controlled by geology. To properly control and manage small water supply systems for central and local governments, it is recommended to construct a total database system for groundwater environment including geology, land use, and topography.