• Title/Summary/Keyword: arsenic

Search Result 1,082, Processing Time 0.023 seconds

Feature of the Change of the Arsenic Ionic State and Prediction of Toxicity in Aqueous Environment depending on Temperature Condition (온도 조건에 따른 비소 이온의 수중 상태 변화 특성 및 독성 예측)

  • Won, Yu-Ra;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.2
    • /
    • pp.176-183
    • /
    • 2013
  • The variation of the stable region of arsenic compounds in aqueous environment with temperature has been investigated by constructing the Pourbaix diagram of arsenic at different temperatures. The standard potential corresponding to the boundary between arsenic compounds with different charge valence was estimated to be decreased with temperature, which means the stability of arsenic compound with +5 charge valence increases. The distribution diagram of the most highly oxidized arsenic compound showed that arsenic acid is formed at higher pH and arsenate is generated at lower pH as temperature rises. The aquatic toxicity due to arsenic compounds was considered to be decreased with temperature in the neutral pH condition based on the $LD_T$ value defined in this study.

Mechanism of Arsenic-Induced Cytotoxiciht in CHO Cells (CHO 세포에서 비소의 세포독성기전)

  • 정해원;기혜성;박영철;한정호;유일재
    • Environmental Mutagens and Carcinogens
    • /
    • v.16 no.2
    • /
    • pp.117-123
    • /
    • 1996
  • This study was carried out to examine the mechanism of Arsenic cytotoxicity through several in vitro test systems. Dose-dependent decrease of cell survival by Arsenic was observed by colony forming assay. Arsenic was weak mutagenic in inducing HGPRT point mutation in CHO cells. The frequency of chromosomal aberrations increased in a dose-dependent manner and the most frequent type of chromosomal aberrations induced by Arsenic were chromatid type deletions. U!trafiltrates of culture media from CHO cells treated with Arsenic induced sister chromatid exchanges(SCE) in CHO cells and Arsenic was able to induce lipid peroxidation in CHO cells. The results suggested that the ultrafiltrates of media from CHO cells treated with Arsenic contain clastogenic factor(CF) and Iipid peroxidation might be involved in the formation of CF.

  • PDF

나노 크기 적철석 입자 피복 모래를 이용한 지하수내 비소 3가와 5가의 제거 기술 개발

  • 고일원;이철효;이상우;김주용;김경웅
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.78-82
    • /
    • 2003
  • Development of hematite-coated sand was evaluated for the application of the PRB (permeable reactive barrier) in the arsenic-contaminated subsurface of the metal mining areas. The removal efficiency of As(III) and As(V), the effect of anion competition and the capability of arsenic removal in the flow system were investigated through the experiments of adsorption isotherm, arsenic removal kinetics against anion competition and column removal. Hematite-coated sand followed a linear adsorption isotherm with high adsorption capacity at low level concentrations of arsenic (< 1.0 mg/l). When As(III) and As(V) underwent adsorption reactions in the presence of anions (sulfate, nitrate and bicarbonate), sulfate caused strong inhibition of arsenic removal, and bicarbonate and nitrate caused weak inhibition due to specific and nonspecific adsorption onto hematite, respectively. In the column experiments, high content of hematite-coated sand enhance the arsenic removal, but the amount of the arsenic removal decreased due to the higher affinity of As(V) than As(III) and reduced adsorption kinetics in the flow system, Therefore, the amount of hematite-coated sand, the adsorption affinity of arsenic species and removal kinetics determined the removal efficiency of arsenic in the flow system. arsenic, hematite-coated sand, permeable reactive barrier, anion competition, adsorption.

  • PDF

Simulating Arsenic Concentration Changes in Small Agricultrual Reservoir Using EFDC-WASP Linkage Model (EFDC-WASP 연계모형을 이용한 소규모 농업용 저수지 비소 농도 모의)

  • Hwang, Soonho;Shin, Sat Byeol;Song, Jung-Hun;Yoon, Kwang Sik;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.5
    • /
    • pp.29-40
    • /
    • 2018
  • Even if a small amount of arsenic (As) is entering to small agricultural reservoir from upper streams, small agricultural reservoir becomes sensitive to changes in arsenic concentration depending on the water level in case of accumulation continuously because of its scale. If we want to manage arsenic concentration in small agricultural reservoir, it is very important to understand arsenic changes in agricultural reservoir. In spite of the fact that modeling is the most accurate method for analyzing arsenic concentration changes in small agricultural reservoirs, but, it is difficult to monitor arsenic change everyday. So, if data is prepared for modeling arsenic changes, water quality modeling is more effective than monitoring. Therefore, in this study, arsenic concentration changes was simulated and arsenic concentration change mechanism in small reservoir was analyzed using hydrological and water quality monitoring data and by conducting EFDC (Environment Fluid Dynamics Code)-WASP (Water Quality Analysis Simulation Program) linkage. EFDC-WASP coupling technique was very useful for modeling arsenic changes because EFDC can consider hydrodynamic and WASP can perform arsenic concentration simulation, separately. As a results of this study, during dry season, As concentration was maintained relatively high arsenic concentrations. Therefore, water level control will be needed for managing As concentration of reservoir.

Assessment of Arsenic Levels in Body Samples and Chronic Exposure in People Using Water with a High Concentration of Arsenic: a Field Study in Kutahya

  • Arikan, Inci;Namdar, Nazli Dizen;Kahraman, Cuneyt;Dagci, Merve;Ece, Ezgi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.8
    • /
    • pp.3183-3188
    • /
    • 2015
  • Objective: This study aimed to evaluate the prevalence of skin lesions, which is a health effect of chronic arsenic (As) exposure, and determine the hair/blood arsenic concentrations of people living in Kutahya villages who are using and drinking tap water with a high concentration of arsenic. Materials and Methods: A total of 303 people were included in the present cross-sectional study. A prepared questionnaire form was used to collect the participants' information and environmental history. Skin examination was performed on all participants. Hair, blood and water samples were analyzed using atomic absorption spectroscopy. The cumulative arsenic index (CAI) was calculated for all participants. Results: Villages were divided into two groups according to the arsenic level (<$20{\mu}g/L$, Group I; >$20{\mu}g/L$, Group II) in their water. The prevalence of skin lesions, hair and blood arsenic level, and CAI were found to be higher in the Group II participants. There was a positive association between body arsenic levels and CAI in the participants of each group. Conclusions: The number of skin lesions and arsenic concentrations in body samples were found to increase with the water arsenic level and exposure time. We hope that sharing this study's results with local administrators will help accelerate the rehabilitation of water sources in Kutahya.

Efficient Removal of Arsenic Using Magnetic Multi-Granule Nanoclusters

  • Lee, Seung-Ho;Cha, Jinmyung;Sim, Kyunjong;Lee, Jin-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.605-609
    • /
    • 2014
  • Magnetic multi-granule nanoclusters (MGNCs) were investigated as an inexpensive means to effectively remove arsenic from aqueous environment, particularly groundwater sources consumed by humans. Various size MGNCs were examined to determine both their capacity and efficiency for arsenic adsorption for different initial arsenic concentrations. The MGNCs showed highly efficient arsenic adsorption characteristics, thereby meeting the allowable safety limit of $10{\mu}g/L$ (ppb), prescribed by the World Health Organization (WHO), and confirming that 0.4 g and 0.6 g of MGNCs were sufficient to remove 0.5 mg/L and 1.0 mg/L of arsenate ($AsO_4{^{3-}}$) from water, respectively. Adsorption isotherm models for the MGNCs were used to estimate the adsorption parameters. They showed similar parameters for both the Langmuir and Sips models, confirming that the adsorption process in this work was active at a region of low arsenic concentration. The actual efficiency of arsenate removal was then tested against 1 L of artificial arsenic-contaminated groundwater with an arsenic concentration of 0.6 mg/L in the presence of competing ions. In this case, only 1.0 g of 100 nm MGNCs was sufficient to reduce the arsenic concentrations to below the WHO permissible safety limit for drinking water, without adjusting the pH or temperature, which is highly advantageous for practical field applications.

INCREASED SUSCEPTIBILITY OF PLATELETS BY ARSENIC IN DRINKING WATER: A CONTRIBUTING FACTOR TO CARDIOVASCULAR DISEASE

  • Lee, Moo-Yeol;Chung, Jin-Ho
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.05a
    • /
    • pp.69-70
    • /
    • 2002
  • Arsenic (As) is a ubiquitous element found in several forms in foods and environmental media, such as soil, air, and water. The primary route of human exposure is through ingestion of arsenic-contaminated food and drinking water. The predominant form of arsenic in drinking water is inorganic arsenic, which is both highly toxic and readily bioavailable.(omitted)

  • PDF

Effects of Yeonlyeonggobon-dan on the Blood of Arsenic-poisoned Rats

  • Lim, Jong-Pil;Kang, In-Tag
    • Journal of Evidence-Based Herbal Medicine
    • /
    • v.2 no.1
    • /
    • pp.43-49
    • /
    • 2009
  • Sodium arsenate and Yeonlyeonggobon-dan (nianlinggubendan) extract (YGD), a herbal restorative were treated p.o. 20 mg/kg and 500 mg/kg, respectively, and concurrently to rats, and examined the biochemical parameters in blood. The values of white blood cell (WBC), red blood cell (RBC), hemoglobin (Hgb) and hematocrit (Hct) in each group did not show significant variance. The value of aspartate aminotrasferase (AST) of arsenic-treated group was increased for 2 weeks significantly while that of the group of concurrent administration with YGD became low significantly compared with arsenic-treated group and the value of alkaline phosphatase (ALP) of arsenic-treated group was decreased while that of the group of concurrent administration with YGD was increased significantly compared with arsenic-treated group. In arsenic-treated groups, the value of glucose (Glu), and those of lactic dehydrogenase (LDH), blood urea nitrogen (BUN) and triglyceride (TG) were decreased at first but increased later while the groups of concurrent administration with YGD showed significant recovery from the toxicity of arsenic.

  • PDF

Substantial Evidences Indicate That Inorganic Arsenic Is a Genotoxic Carcinogen: a Review

  • Roy, Jinia Sinha;Chatterjee, Debmita;Das, Nandana;Giri, Ashok K.
    • Toxicological Research
    • /
    • v.34 no.4
    • /
    • pp.311-324
    • /
    • 2018
  • Arsenic is one of the most toxic environmental toxicants. More than 150 million people worldwide are exposed to arsenic through ground water contamination. It is an exclusive human carcinogen. Although the hallmarks of arsenic toxicity are skin lesions and skin cancers, arsenic can also induce cancers in the lung, liver, kidney, urinary bladder, and other internal organs. Arsenic is a non-mutagenic compound but can induce significant cytogenetic damage as measured by chromosomal aberrations, sister chromatid exchanges, and micronuclei formation in human systems. These genotoxic end points are extensively used to predict genotoxic potentials of different environmental chemicals, drugs, pesticides, and insecticides. These cytogenetic end points are also used for evaluating cancer risk. Here, by critically reviewing and analyzing the existing literature, we conclude that inorganic arsenic is a genotoxic carcinogen.

Immobilization of Arsenic in Tailing by Fenton-like reaction (펜톤유사반응을 이용한 광미중에 비소의 불용화)

  • 정익재;최용수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.127-130
    • /
    • 2002
  • Recently, the contamination with heavy metals in closed mines has been seriously considered since it can disturb human health through the polluted drinking-water and crops. Therefore, the concerns about the remediation of polluted land and treatment technology for hazardous matters have been accelerated. However, any of practical methods for treatment and/or remediation have not been yet suggested. In this research, a novel technology was studied to immobilize arsenic in tailings and soils disturbed by mining. In this technology, Fenton-like reaction were applied to immobilize arsenic in tailings. In the examination of Fenton-like reaction using pure pyrite, $H_2O$$_2$ and arsenic, the concentrations of extracted arsenic and iron were reduced up to 90 and 75%, respectively From the result of SEM-EDS, the Immobilization of arsenic was observed on the surface of pyrite. Thus, it can be said that the coating and/or adsorption prevents the extraction of arsenic.

  • PDF