• Title/Summary/Keyword: aromatic polyimides

Search Result 33, Processing Time 0.023 seconds

Synthesis and Characterization of Poly(amic acid)s from a Novel Aromatic Diamine with Bilaterally Attached Benzoxazole Group's

  • Kim, Ji-Heung;Lee, Jae-Kwan;Kim, Young-Jun;Won, Jong-Chan;Park, Kil-Young
    • Macromolecular Research
    • /
    • v.10 no.5
    • /
    • pp.241-245
    • /
    • 2002
  • A new aromatic diamine monomer containing benzoxazole substituents was prepared by a multi-step synthesis starting from 1,4-dibromo-2,5-difluorobenzene. This bulky and disc-shaped monomer was polymerized with commercial dianhydride monomers to give several different poly(amic acid)s with their inherent viscosities in the range of 0.24-0.35 dL/g. The prepared polymers were soluble in typical polar aprotic solvents. Thermal imidization to the corresponding polyimides were investigated by using FT-IR, DSC and TGA.

The Change of Properties and Synthesis of Soluble Polyimides Based on 2,2-Bis(3-amino-4-hydroxyphenyl)hexafluoropropane (2,2-Bis(3-amino-4-hydroxyphenyl)hexafluoropropane을 이용한 용해성 폴리이미드의 합성과 특성변화)

  • Kim, Han-Sung;Ha, Soon-Hyo;Chun, Kyoung-Yong;Han, Hak-Soo;Joe, Yung-il
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.979-984
    • /
    • 1999
  • Aromatic soluble polyimides were synthesized from 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane and various dianhydrides such as pyromelltic dianhydride(PMDA), 3,3',4,4'-benzophenone tetracarboxylic dianhydride(BTDA), and 4,4'-(hexafluoroisopropylidene)-bis(phthalic anhydride)(6FDA). Polyimides prepared by thermal imidization were insoluble in common organic solvents (acetone, MNP, DMAc, DMSO, THF, and DMF) but those prepared by chemical imidization were soluble. The difference of solubility was explained by esterification between hydroxyl group and $CH_3COO^-$ from acetic anhydride used as a dehydration agent in chemical imidization. Glass transition temperatures of polyimides by thermal method were higher than those by chemical method. All of the polyimides are stable up to $300^{\circ}C$ regardless of the sample preparation. The x-ray diffraction patterns showed that all polyimides were amorphrous.

  • PDF

Synthesis and characterization of silicone-containing polyamideimide and its gas separation

  • 이용범;심진기;이영무
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.83-84
    • /
    • 1997
  • 1. INTRODUCTION : Polyimides containing siloxane moiety(poly(imide siloxane), or polysiloxaneimide) have been synthesized because of their some merits over polyimide itseft. Polyimides have excellent thermal and mechanical properties but their poor solubility and processibility in their fullly imidized form give disadvantages in applications. Incorporation of siloxane units make it possible to increase solubility and processibility, and also impart impact resistance, low moisture uptake, low dielectric constant, thermo-oxidative resistance, good adhesion properties to substrate and etc.. Incorporation methods of siloxane groups into the polyimide was mainly copolymerization or terpolymerization between oligomeric dimethylsiloxane and aromatic dianhydride. A few methods of introducing siloxane units in functional groups of polyimide was reported. In our laboratory poly(amideimide siloxane) and poly(imide siloxane) were prepared and the study about their thermal kinetics was performed. In separation membrane area, polysiloxaneimides was utilized in pervaporation and gas separation. Polyimides in gas separation show high selectivity and very low permeability, and introduction of siloxane segments increase permeability with low decrease in selectivity. We aimed to introduce silicone segments into poly(amic acid) state and synthesize polymer partially imidized, and also show the gas separation characteristics of the synthesized polymer.

  • PDF

High Performance Polyimides for Applications in Microelectronics and Flat Panel Displays

  • Ree Moonhor
    • Macromolecular Research
    • /
    • v.14 no.1
    • /
    • pp.1-33
    • /
    • 2006
  • Polyimides (PIs) exhibit excellent thermal stability, mechanical, dielectric, and chemical resistance properties due to their heterocyclic imide rings and aromatic rings on the backbone. Due to these advantageous properties, PIs have found diverse applications in industry. Most PIs are insoluble because of the nature of the high chemical resistance. Thus, they are generally used as a soluble precursor polymer, which forms complexes with solvent molecules, and then finally converts to the corresponding polyimides via imidization reaction. This complexation with solvent has caused severe difficulty in the characterization of the precursor polymers. However, significant progress has recently been made on the detailed characterization of PI precursors and their imidization reaction. On the other hand, much research effort has been exerted to reduce the dielectric constant of PIs, as demanded in the microelectronics industry, through chemical modifications, as well as to develop high performance, light-emitting PIs and liquid crystal (LC) alignment layer PIs with both rubbing and rubbing-free processibility, which are desired in the flat-panel display industry. This article reviews this recent research progresses in characterizing PIs and their precursors and in developing low dielectric constant, light-emitting, and LC alignment layer PIs.

Fully Rod-like Aromatic Polyimides: Structure, Properties, and Chemical Modifications

  • Moonhor Ree;Shin, Tae-Joo;Lee, Seung-Woo
    • Macromolecular Research
    • /
    • v.9 no.1
    • /
    • pp.1-19
    • /
    • 2001
  • Poly(p-phenylene pyromellitimide) and poly(4,4'-biphenylene pyromellitimide) are representatives of fully rod-like polyimides. Their structure and properties in thin films are reviewed. The polymers exhibit some excellent properties such as high molecular packing coefficient, high mechanical modulus, and low thermal expansion coefficient, and low interfacial stress, so that they are very attractive to both industry and academia. However, these polymers are very brittle and thus practically useless. Some chemical modifications to improve such drawback with a little sacrifice of the high modulus are described: i) incorporation of short side groups into the polymer backbone and ii) insertion of proper linkages into the polymer backbone.

  • PDF

Cleaning efficiency for Alternative cleaning solvent of Screen printing (스크린 인쇄에서의 대체세정제에 대한 세정효율)

  • 김재해
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.15 no.2
    • /
    • pp.117-130
    • /
    • 1997
  • Studies have been conducted to explore thermal imidization of polyamic acid. Aromatic polyimides are well recognized as high temperature linear polymers, and polyimide are used as structural materials, fibers, and adhesive. Two different kinds of polyimide were prepared by theimidization of polyamic acid which were synthesized from 2,2-bis[4-(4-aminophenoxy)phenyl]- hexafluoropropane, 2,2-bis [4-(4-aminophenxy)phenyl] - hexamethylpropane and caprolactam and pyromelliti dianhydride under N-Methly-pyrrolidinone solvent. Polyamic acids were converted to polyimides containing imide bond by thermal imidization. The weight 50% loss temperatures of polyimide by TGA thermogram were recorded in the range of 700 ~ 720$^{\circ}$C in nitrogen gas. According, as a results, we conclued polyamic acid were cycliation after H2O molecule separationed, and this polyimide film could be used for Printed Circuit Boand.

  • PDF

A Highly Sensitive Humidity Sensor Using a Modified Polyimide Film

  • Kim, Yong-Ho;Lee, Joon-Young;Kim, Yong-Jun;Kim, Jung-Hyun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.2
    • /
    • pp.128-132
    • /
    • 2004
  • This paper presents the design, fabrication sequence and measurement results of a highly sensitive capacitive-type humidity sensor using a polyimide film without hydrophobic elements. The structure of the humidity sensor is MIM (metalinsulator-metal). For a high sensitivity, a modified aromatic polyimides as a moisture absorbing layer has been synthesized instead of using general polyimides containing hydrophobic elements. The polyimide film was obtained by synthesizing and thermally polymerizing polyamic acid composed of m-pyromellitic dianhydride, phenelenediamine and dimethylacetamide. Characteristics of fabricated sensors which include sensitivity, hysteresis and stability have been measured. The measurement result shows the percent normalized capacitance change of 0.37/%RH over a range from 10 to 90%RH, hysteresis of 0.77% over the same %RH range and maximum drift of 0.25% at 50%RH. The result shows that the developed humidity sensor can be applied to evaluate a hermeticity of various sensors and actuator systems as well as micro packages.

Synthesis and Properties of New Aromatic Polyimides for IPS-mode

  • Kim, Y.B.;Park, J.C.;Park, D.J.;Son, K.C.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.792-795
    • /
    • 2006
  • In-plane-switching (IPS)-mode LCD is one of the most useful technologies for a broad range of viewing angles. To apply for IPS-LCDs, we synthesized novel homogeneous alignment materials, changing dianhydrides (BTDA and BPDA) and bridged diamines (ODA and PACM). We measured their pre-tilt angles using the crystal rotation method with positive LC and their surface properties.

  • PDF