• Title/Summary/Keyword: aromatic hydrocarbons

Search Result 741, Processing Time 0.033 seconds

A study on analytical methods for polycyclic aromatic hydrocarbons in foods (식품 중 다환방향족탄화수소 분석법 연구)

  • Kim, Yong-Yeon;Shin, Han-Seung
    • Food Science and Industry
    • /
    • v.55 no.1
    • /
    • pp.45-57
    • /
    • 2022
  • This study was proceeded the analytical methods using various analytical instruments for polycyclic aromatic hydrocarbons (PAHs) in food products. Various analytical methods were developed to determine levels of PAHs including benzo[a]pyrene, benzo[a]anthracene, benzo[b]fluoranthene, and chrysene formed in various food products using gas chromatography-mass spectrometry (GC-MS), enzyme-linked immunosorbent assay (ELISA) and raman spectroscopy. Recently, the rapid on-site response for the detection of hazardous substances in food aims to develop an onsite rapid detection of a simplified technical analysis method to reduce the time and cost required for analysis of PAHs. Current PAHs detection methods have been reviewed along with new raman spectroscopy analytical method.

Experimental Study on Turbulent Ethylene Diffusion Flame (에틸렌 난류확산 화염에 관한 실험적 연구)

  • Yang, G.S.;Kim, Y.M.
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.2
    • /
    • pp.23-33
    • /
    • 1999
  • A turbulent non-premixed ethylene flame, which was set up in a vertical wind tunnel, was examined to understand the effect of turbulent mixing on formations of soot and gaseous species in the flames. Temperature and velocity profiles were measured using uncoated thermocouples and LDV system. Gaseous samples were withdrawn by using a water cooled stainless iso-kinetic gas sampling probe. The samples for inorganic compounds and light hydrocarbons were collected with sampling bottles and were analyzed by a gas chromatography. The samples for aromatic hydrocarbons were collected on a sorbent tube and were analyzed on a GC/MS system. Some of main results were followed. CO and $CO_2$ were measured relatively in early part of flame and the concentration of CO was greater than that of $CO_2$ all over the early flame region due to the scavenging of the oxidizing species OH by soot particles. Aromatic hydrocarbons were measured at x/D=122 along the radial direction and main important species were benzene, xylene, toluene, styrene, indene, naphthalene. The peak points of these compounds occurred at r/D=0.8 apart from the center of flame, around in which the concentration of $C_2H_2$ decayed relatively rapidly from the maximum value.

  • PDF

Complexation of Co-contaminant Mixtures between Silver(I) and Polycyclic Aromatic Hydrocarbons

  • Yim, Soo-Bin
    • Journal of Environmental Science International
    • /
    • v.12 no.8
    • /
    • pp.871-879
    • /
    • 2003
  • The complexation of co-contaminant mixtures between Ag(I) and polycyclic aromatic hydrocarbon (PAH) molecules (naphthalene, pyrene, and perylene) were investigated to quantify the equilibrium constants of their complexes and elucidate the interactions between Ag(I) and PAH molecules. The apparent solubilities of PAHs in aqueous solutions increased with increasing Ag(I) ion concentration. The values, K$_1$ and K$_2$ of equilibrium constants of complexes of Ag(I)-PAHs, were 2.990 and 0.378, 3.615 and 1.261, and 4.034 and 1.255, for naphthalene, pyrene, and perylene, respectively, The K$_1$and K$_2$ values of PAHs for Ag(I) increased in the order of naphthalene < pyrene < perylene and naphthalene < pyrene ≒ perylene, respectively, indicating that a larger size of PAH molecule is likely to have more a richer concentration of electrons on the plane surfaces which can lead to stronger complexes with the Ag(I) ion. For the species of Ag(I)-PAH complexes, a 1:1 Ag(I) : the aromatic complex, AgAr$\^$+/, was found to be a predominant species over a 2:1 Ag(I) : aromatic complex, Ag$_2$Ar$\^$++/. The PAH molecules with four or more aromatic rings and/or bay regions were observed to have slightly less affinity with the Ag(I) ion than expected, which might result from inhibiting forces such as the spread of aromatic $\pi$ electrons over o wide molecular surface area and the intermolecular electronic repulsion in bay regions.

Volatile Organic Compounds contamination in some urban runoff and groundwater samples in Seoul City (서울시 도로변 빗물과 지하수의 VOCs오염)

  • 이평구;박성원;전치완;신성천
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.73-91
    • /
    • 2001
  • compounds (VOCs) were selected for assessment of VOCs contamination in some urban runoff and groundwater samples in Seoul. They included 3 aromatic hydrocarbons, 13 alkyl benzenes, 1 ether, 26 halogenated alkanes, 10 halogenated alkenes, and 9 halogenated aromatics. The levels of VOCs in urban runoff and groundwater were measured for samples collected in March 2000, June 2000 and November 2000 in Seoul City. A total of 78 samples (44 run-off water, 27 groundwater, and 7 samples from 4 urban wastewater treatment plants in Seoul) were collected and analysed by GC-MS with purge and trap. After examination of the runoff, it was concluded that alkyl benzenes and aromatic hydrocarbons were organic compounds which were significantly impacted by traffic flows in Seoul. Of 62 VOCs, only 11 VOCs were not detected in runoff samples, while 14 VOCs were detected in 27 groundwater samples. The toluene content in the runoff was extremely variable from 0.1ppb to 29,310ppb, depending on the different sampling sites. The concentrations of xylene ranged between 0.07ppb and 2970ppb in the runoff. The concentrations ranged from 0.05ppb to 33.0ppb for benzene, 0.05ppb to 960ppb for ethylbenzene, 0.08ppb to 20ppb for trichloromethane (chloroform) , 0.03ppb to 4.30ppb for trichloroethylene(TCE) and 0.1ppb to 50ppb for 1,1,2-trichloroethane. From the preliminary study of groundwater from some wells in Seoul, the most frequently detected VOCs are djchlorornethane(methylene chloride), trichloromethane(chloroform) and toluene. Most of aromatic hydrocarbons, alkyl benzenes and other solvents generally lower than detection limits.

  • PDF

Polycyclic Aromatic Hydrocarbons in the sediments of Kwangyang Bay on Korea (광양만 유역 퇴적토 중의 다환방향족탄화수소류)

  • Jeong, Heung Ho;Jeong, Ho Seung;Kim, Eun Yeong;Jo, Hwan Ik;Hwang, Ju Chan;Choe, Sang Won
    • Journal of Environmental Science International
    • /
    • v.13 no.6
    • /
    • pp.543-549
    • /
    • 2004
  • Polycyclic aromatic hydrocarbons(PAHs) in sediments of Kwangyang bay on Korea, have been investigated by gas chromatography-mass spectrometery (GC/MS). The average content of total PAHs in all samples was 2,211ppb, and the range was from 36 to 22,699ppb. The higher concentrations were found in sediment sampled near Kwangyang iron processing plant, Taeindo. The resulting distributions of PAHs according to the number of aromatic ring and molecular ratios of specific aromatic compounds (phenanthrene, anthracene, fluoranthene and pyrene) have been discussed in terms of sample location, origin of the organic matter. Four, five and six rings of PAHs were mainly found near to Kwangyang iron processing plant, and three and four rings near to Yeosu chemical kombinat This result typically indicated the local characteristics, depending on the origin of PAHs.

Toxicoproteomics in the Study of Aromatic Hydrocarbon Toxicity

  • Cho, Chang-Won;Kim, Chan-Wha
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.3
    • /
    • pp.187-198
    • /
    • 2006
  • The aromatic hydrocarbons (AHs), which include benzene, polycyclic aromatic hydrocarbons, and dioxin, are important chemical and environmental contaminants in industry that usually cause various diseases. Over the years, numerous studies have described and evaluated the adverse health effects induced by AHs. Currently, "Omics" technologies, transcriptomics and proteomics, have been applied in AH toxicity studies. Proteomics has been used to identify molecular mechanisms and biomarkers associated with global chemical toxicity. It could enhance our ability to characterize chemical-induced toxicities and to identify noninvasive biomarkers. The proteomic approach (e.g. 2-dimensional electrophoresis [2-DE]), can be used to observe changes in protein expression during chemical exposure with high sensitivity and specificity. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) and electrospray ionization-quadrupole (ESI-Q)-TOF MS/MS are recognized as the most important protein identification tools. This review describes proteomic technologies and their application in the proteomic analysis of AH toxicity.

Excitation Mechanism of Fluorescent Polycyclic Aromatic Amines and Polycyclic Aromatic Hydrocarbons in Peroxyoxalate Chemiluminescence Reactions

  • Sung Chul Kang;Kang-Jin Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.3
    • /
    • pp.224-227
    • /
    • 1990
  • The excitation mechanism of polycyclic aromatic amines (amino-PAHs) and polycyclic aromatic hydrocarbons(PAHs) for the chemiluminescence arising from the reaction between oxalate ester, bis(2,4,6-trichlorophenyl)oxalate (TCPO) or bis(2,4-dinitrophenyl)oxalate (DNPO) and hydrogen peroxide has been studied in terms of the excitation efficiencies to singlet excitation energies and the oxidative half-wave potentials. As a results of the study, the excitations of both amino-PAHs and PAHs appear to involve the charge transfer type of energy transfer. However the chemiluminescence efficiency corrected for fluorescence quantum yield of the amino-PAHs are varied more sensitively to the oxidative half-wave potential than that of PAHs possibly due to the large difference in solvation energy between the compounds and their ions.

Genetic Effects on Exposure to Polycyclic Aromatic Hydrocarbons in a Korean Population

  • Yang, Mi-Hi
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.209-211
    • /
    • 2002
  • A number of polycyclic aromatic hydrocarbons (PAHs), such as benzo[a]pyrene, are carcinogenic and thought to contribute to the overall burden of human cancer (1). PAHs are ubiquitous in the environment and humans are exposed to them via multi-pathways, e.g. air or soil of urban areas, exposure to direct or indirect tobacco smoke, and ingestion of food or water polluted by combustion effluents (2-3). (omitted)

  • PDF

Mechanism for Chemiluminescent Reactions of Bis(2,4,6-trichlorophenyl)oxalate, Hydrogen Peroxide and Fluorescent Aromatic Hydrocarbons

  • Song Hyung-Soo;Shin Hyung Seon;Kim Kang-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.1
    • /
    • pp.17-21
    • /
    • 1988
  • A mechanistic study on the chemiluminescence resulting from the reaction between bis(2,4,6-trichlorophenyl)oxalate(TCPO) and hydrogen peroxide in the presence of fluorescent polycyclic aromatic hydrocarbons in a viscous phthalate medium has been conducted. The rate determining step, decay rate constants, and relative quantum efficiencies yielded by varying the concentration of reagents generally support an existing mechanism. However, a reaction between TCPO and sodium salicylate was not observed.