• Title/Summary/Keyword: aromatic components

Search Result 224, Processing Time 0.029 seconds

Volatile Flavor Components of Scent, Colored, and Common Rice Cultivars in Korea

  • Kim, Chang-Yung;Lee, Jong-Chul;Kim, Young-Hoi;Pyon, Jong-Yeong;Lee, Sun-Gye
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.3
    • /
    • pp.181-185
    • /
    • 1999
  • To compare the composition of volatile flavor components of three different cultivars of rice, Hyangnambyeo (aromatic cultivar), Heugjinjubyeo (pigmented cultivar) and Dongjinbyeo (normal cultivar), the volatile flavor components of brown rice were isolated by Likens-Nickerson simultaneous steam distillation and extraction apparatus. The flavor concentrates obtained were analyzed by gas chromatography and gas chromatography-mass spectrometry. A total of 65 components, including 14 aliphatic aldehydes and ketones, 7 aliphatic alcohols, 8 aromatic alcohols, 13 hydrocarbons, 9 esters, 7 aliphatic acids, and 7 miscellaneous components were identified. The aliphatic aldehydes, which are known as contributors to the overall flavor of cooked rice, were present in larger amounts in Hyangnambyeo than in Heugjinjubyeo and Dongjinbyeo, while the difference in quantity of these components between Heugjinjubyeo and Dongjinbyeo was not remarkable. Hyangnambyeo and Heugjinjubeyo contained 562 ng and 259 ng of 2-acetyl-1-pyrroline per gram of brown rice based on dry weight, respectively, which is a key compound contributing to the popcorn-like aroma in aromatic rice. Dongjinbeyo contained about 6 ng.

  • PDF

The Effects of Stamping and Roasting Treatments on Volatile Aromatic Components in Curry Powder (미분쇄 및 배전처리가 카레분의 휘발성 향기성분의 변화에 미치는 영향)

  • Park, Wan-Kyu;Yoon, Jong-Hoon;Kim, Hyean-Wee;Choi, Chun-Un
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.276-279
    • /
    • 1991
  • Effects of stamping and roasting treatments on change of volatile aromatic components in curry powder were investigated by gas chromatography. These were conducted for improving volatile aromatic flavor and for improving aging effect. Major volatile aromatic components of curry powder were eugenol, cuminaldehyde, myristicin, anethole, eugenolacetate, cinnamaldehyde, linalool, limonene, p-cymene and ${\gamma}-terinene$. By stamping treatment, the content of low volatile components increased till 10 min, whereas that of high volatile components started to increase after 10 min. The content of low volatile components decreased with increasing roasting time.

  • PDF

Analysis of VolatHe Flavour Components in Aromatic Rices using Electronic Nose System (전자코 시스템에 의한 향미의 방향미 성분 분석)

  • 문형인;이재학;이동진
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.6
    • /
    • pp.672-677
    • /
    • 1996
  • Volatile flavour components rates from aromatic rices were analyzed by Electronic nose systems. In functional group, polar compounds and aldehyde compounds showed much of volatile flavour components than apolar compounds, sulphur compounds and aminated compounds. The profiles of volatile flavour components rates were markedly differents of sen-sing times, amylose content.

  • PDF

Association of a Common Reductase with Multiple Aromatic Terminal Dioxygenases in Sphingomonas yanoikuyae Strain B1

  • Mihyun Bae;Kim, Eungbin
    • Journal of Microbiology
    • /
    • v.38 no.1
    • /
    • pp.40-43
    • /
    • 2000
  • The aromatic dioxygenase system in Sphingomonas yanoikuyae strain Bl consists of three components, an oxygenase, a ferredoxin, and a reductase. The insertional knockout of the bphA4 gene encoding a reductase and subsequent complementation experiments showed that the reductase encoded by bphA4 in S. yanoikuyae strain Bl is associated with multiple dioxygenase components including that of toluate dioxygenase (XyIXY).

  • PDF

Analysis of the aromatic components of the forest bathing (삼림욕 향기 성분 분석)

  • 노택우;윤석신
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.17 no.1
    • /
    • pp.29-38
    • /
    • 1991
  • As the suitable place of the forest bathing, Two places of the needle-leaf trees, which are located in the Oh-Saek mineral spring near place from the Sorak mountain, were selected. And then, Headspace gas trapping apparatus were setted in that two places and the aromatic components of the forest were adsorbed by Tenax-TA column for 24 hours. And Tenax-TA column were analyzed by the GC SE GC-MS. The analyzed components were found to contain up to between 70-80% of pollutants, which are Toluene, Methyl Chloride, Hexane, p-Xylene, Benzene, ... etc. On the other hand, the aromatic components of the forest, which give aromatheraphitical effectness, are as follow: alpha-Pinene, Limonene, 1, 8-Cin-eol, Benzaldehyde, . . . etc.

  • PDF

Comparison of Volatile Flavor Components of Korean Aromatic Rice and Nonaromatic Rice (한국산 향미와 일반미와 휘발성 성분 비교)

  • 이종철;김영희
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.2
    • /
    • pp.299-304
    • /
    • 1999
  • To compare the composition of volatile flavor components of two different types of rice, the volatile flavor concentrates isolated from brown rices Hyangnambyeo(aromatic cultivar) and Dongjinbyeo (normal cultivar) were analyzed by gas chromatography and gas chromatography mass spectrometry. A total of components, including 16 hydrocarbons, 16 aldehydes and ketones, 15 alcohols, 4 acids, and 10 miscellaneous components were identified positively or tentat ively. Among them, n pentanol was the most abundant component in both samples and Hyangnambyeo contained more aldehydes and alcohols than Dongjinbyeo. 2 Acetyl 1 pyrroline which is chiefly responsible for the character istic odor of aromatic type rice was high in Hyangnambyeo compare to Dongjinbyeo, but these were detected as minor component.

  • PDF

Microbial Degradation of Monohydroxybenzoic Acids

  • Kim, Chi-Kyung;Tim
    • Journal of Microbiology
    • /
    • v.38 no.2
    • /
    • pp.53-61
    • /
    • 2000
  • Hydroxybenzoic acids are the most important intermediates in the degradative pathways of various aromatic compounds. Microorganisms catabolize aromatic compounds by converting them to hydroxylated intermediates and then cleave the benzene nucleus with ring dioxygenases. Hydroxylation of the benzene nucleus of an aromatic compound is an essential step for the initiation and subsequent disintegration of the benzene ring. The incorporation of two hydroxyl groups is essential for the labilization of the benzene nucleus. Monohydroxybenzoic acids such as 2-hydroxybenzoic acid, 3-hydroxybenzoic acid, and 4-hydrosybenzoic acid, opr pyrocattechuic acid that are susceptible for subsequent oxygenative cleavage of the benzene ring. These terminal aromatic intermediates are further degraded to cellular components through ortho-and/or meta-cleavage pathways and finally lead to the formation of constituents of the TCA cycle. Many groups of microorganisms have been isolated as degraders of hydroxybenzoic acids with diverse drgradative routes and specific enzymes involved in their metabolic pahtway. Various microorganisms carry out unusual non-oxidative decarboxylation of aromatic acids and convert them to respective phenols which have been documented. Futher, Pseudomonas and Bacillus spp. are the most ubiquitous microorganisms, being the principal components of microflora of most soil and water enviroments.

  • PDF

Screening and Isolation of Antibiotic Resistance Inhibitors from Herb Materials-Resistance Inhibition of Volatile Components of Korean Aromatic Herbs

  • Lee, Chung-Kyu;Kim, Hye-Kyung;Moon, Kyung-Ho;Shin, Kuk-Hyun
    • Archives of Pharmacal Research
    • /
    • v.21 no.1
    • /
    • pp.62-66
    • /
    • 1998
  • The resistance inhibitory activities of 54 odorant mixtures (essential oil) from 41 Korean aromatic herbs were tested against multi-drug resistant Staphylococcus aureus SA2, which has resistances to 10 usual antibiotics including chloramphenicol. As results, combinations of 28 kinds of samples from 21 herbs and chloramphenicol have resistance inhibitory activities in dose dependent manner.

  • PDF

Effect of roasting conditions on aromatic compounds and physicochemical characteristics of germinated aromatic rice (Oryza sativa L.-Miryang 302) tea (볶음 공정에 따른 발아 향미차의 향기성분 및 이화학적 특성)

  • Nam, San;Kwon, Yu-Ri;Cho, Jun-Hyun;Seo, Woo-Duck;Choi, Sik-Won;Youn, Kwang-Sup
    • Food Science and Preservation
    • /
    • v.23 no.5
    • /
    • pp.673-679
    • /
    • 2016
  • This study was performed to verify the possibility of manufacturing a germinated aromatic rice tea, which was roasted at 200, 250, and $300^{\circ}C$ each for 10, 20, and 30 min. The roasted aromatic rice was analysed physicochemical properties, sensory characteristics and aromatic compounds. The total polyphenol content and DPPH radical scavenging activities of the germinated aromatic rice increased as the roasting temperature and time increased. Total soluble solid contents, turbidity and browning index of the germinated aromatic rice tea also increased was the roasting temperature and roasting time increased. The pH did not change by roasting. The main aromatic components in roasted germinated aromatic rice tea were 2-methyl butanal, 3-methyl butanal, benzaldehyde and nonanal, which increased according to increasing temperature and time. However, those favorable aroma components were decreased at more than $300^{\circ}C$ of roasting temperature. In addition, methyl benzene, pentanol were increased which affect odor aroma. The sensory score of germinated aromatic rice tea also increased with high roasting temperature and time. However, aromatic rice roasted at a higher temperature ($300^{\circ}C$) showed lower sensory score. Therefore roasting temperature and time must be controlled for manufactureing high quality of germinated aromatic rice tea, and the optimun roasting conditions were $250^{\circ}C$ and 30 min, which provide best physicochemical characteristics of aromatic rice tea.

Volatile Flavor Components of Chestnut Honey Produced in Korea (한국산 밤꿀의 휘발성 향기성분)

  • Kang, Kui-Hwan
    • Applied Biological Chemistry
    • /
    • v.41 no.1
    • /
    • pp.84-88
    • /
    • 1998
  • Composition of volatile flavor components of chestnut flower sand honey were investigated by GC and GC-MS. A total of 64 components including 14 aromatic compounds, 13 hydrocarbons, 7 fatty acids, 4 terpenes, 12 oxygenated hydrocarbons, and 7 misellaneous compounds and a total 41 components including 7 aromatic compounds, 16 hydrocarbons, 12 fatty acids, 1 terpene, 2 oxygenated hydrocarbons, and 3 misellaneous compounds were identified from total volatile concentrates of chestnut flower and honey respectively. The main components of flower volatile were 2-phenyl ethyl alcohol, 1-phenyl ethyl alcohol and benzyl alcohol which comprise 49.02% of this volatiles The main components of flower volatile were 2-phenyl ethyl alcohol, 1-phenyl ethyl alcohol and benzyl alcohol which comprise 49.02% of this volatiles. Aromatic compounds such as 2-phenyl ethyl alcohol, benzyl alcohol, 1-phenyl ethyl alcohol, 1-(2-aminophenyl) ethanone act as major contributor to the characteristic honey-like flavor of chestnut honey.

  • PDF