• Title/Summary/Keyword: armor units

Search Result 32, Processing Time 0.028 seconds

Dynamic Reliability Model for Stability Analysis of Armor Units on Rubble-Mound Breakwater (경사제 피복재의 안정성 해석을 위한 동력학적 신뢰성 모형)

  • Lee, Cheol-Eung
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.163-174
    • /
    • 2001
  • A dynamic reliability model for analyzing the stability of armor units on rubble-mound breakwater is mathematically developed by using Hudson's formula and definition of single-failure mode. The probability density functions of resistance and loading functions are defined properly, the related parameters to those probability density functions are also estimated straightforwardly by the first-order analysis. It is found that probabilities of failure for the stability of armor units on rubble-mound breakwater are continuously increased as the service periods are elapsed, because of the occurrence of repeated loading of random magnitude by which the resistance may be deteriorated. In particular, the factor of safety is incorporated into the dynamic reliability model in order to evaluate the probability of failure as a function of factor of safety. It may thus be possible to take some informations for optimal design as well as managements and repairs of armor units on rubble-mound breakwater from the dynamic reliability analyses.

  • PDF

Evaluation of Partial Safety Factors of Armor Units by Inverse-Reliability Analysis (역해석법에 의한 피복재의 부분안전계수 산정)

  • Lee, Cheol-Eung;Park, Dong-Heon
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.149-156
    • /
    • 2008
  • A reliability model of Level II AFDA is developed to analyze the stability of armor units on the sloped coastal structures. Additionally, the partial safety factors of random variables related to armor units can be straightforwardly evaluated by applying the inverse-reliability method in which influence coefficients and uncertainties of random variables, and target probability of failure are combined directly. In particular, a design equation for armor units is derived in terms of the same criteria as deterministic design method in order to apply the reliability-based design method of Level I without some understanding to the reliability analysis. Finally, it is confirmed that several results redesigned by the reliability-based design method of Level I have satisfactorily agreement with results of CEM as well as those of Level II AFDA.

  • PDF

Reliability Analysis for Fracture of Concrete Armour Units (콘크리트 피복재의 단면파괴에 대한 신뢰성 해석)

  • 이철응
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.2
    • /
    • pp.86-96
    • /
    • 2003
  • A fracture or breakage of the concrete armor units in the primary cover layer of breakwaters is studied by using the reliability analysis which may be defined as the structural stability. The reliability function can be derived as a function of the angle of rotation that represents the rocking of armor units quantitatively. The relative influences of all of random variables related to the material and geometric properties on the fracture of armor units is analyzed in detail. In addition, the probability of failure for the fracture of individual armor unit can be evaluated as a function of the incident wave height. Finally, Bernoulli random process and the allowable fracture ratio may be introduced together in this paper, by which the probability of failure of a breakwater due to the fracture of armer units can be obtained straightforwardly. It is found that the probability of failure of a breakwater due to the fracture of armor units may be varied with the several allowable fracture ratios. Therefore, it should be necessary to consider the structural stability as well as the hydraulic stability for the design of breakwaters with multi-leg slender concrete armor units of large size under wave action in deep water.

Development of Stochastic Markov Process Model for Maintenance of Armor Units of Rubble-Mound Breakwaters (경사제 피복재의 유지관리를 위한 추계학적 Markov 확률모형의 개발)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.2
    • /
    • pp.52-62
    • /
    • 2013
  • A stochastic Markov process (MP) model has been developed for evaluating the probability of failure of the armor unit of rubble-mound breakwaters as a function of time. The mathematical MP model could have been formulated by combining the counting process or renewal process (CP/RP) on the load occurrences with the damage process (DP) on the cumulative damage events, and applied to the armor units of rubble-mound breakwaters. Transition probabilities have been estimated by Monte-Carlo simulation (MCS) technique with the definition of damage level of armor units, and very well satisfies some conditions constrained in the probabilistic and physical views. The probabilities of failure have been also compared and investigated in process of time which have been calculated according to the variations of return period and safety factor being the important variables related to design of armor units of rubble-mound breakwater. In particular, it can be quantitatively found how the prior damage levels can effect on the sequent probabilities of failure. Finally, two types of methodology have been in this study proposed to evaluate straightforwardly the repair times which are indispensable to the maintenance of armor units of rubble-mound breakwaters and shown several simulation results including the cost analyses.

Analysis of Probabilities of Failure and Partial Safety Factors of Armor Units on Tranding and Coastal Harbors (무역항 및 연안항 피복재의 파괴확률과 부분안전계수 해석)

  • Lee, Cheol-Eung;Park, Dong-Heon
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.157-165
    • /
    • 2008
  • Level II AFDA and Level III MCS reliability models are applied to analyze the stability of armor units on trading and coastal harbors in Korea. Hudson's formula and Van der Meer's formula are used in this reliability analysis. Also, probability density functions of reliability index and probability of failure are derived by the additional analysis. In addition, the partial safety factors of all harbors related to armor units can be straightforwardly evaluated by the inverse-reliability method. The upper and lower limits and average level of partial safety factors can be statistically investigated with the results of all cases applied in this paper. Therefore, it may be possible to design armor units of new breakwaters including the uncertainty of random variable and target level by using the present results.

  • PDF

Stochastic Reliability Analysis of Armor Units of Rubble-Mound Breakwaters Subject to Multiple Loads (다중하중에 따른 경사제 피복재의 추계학적 신뢰성 해석)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.2
    • /
    • pp.138-148
    • /
    • 2012
  • A stochastic reliability analysis model has been developed for evaluating the time-dependent stability performance of armor units of rubble-mound breakwaters subjected to the multiple loads of arbitrary magnitudes which could be occurred randomly. The initial structural capacities and the damage rates of armor units of rubble-mound breakwaters could be estimated as a function of the incident wave height with a given return period by using the modified Hudson's formula and Melby's formula. The structural stability performances of armor units of rubble-mound breakwaters could be analyzed in detail through the lifetime reliability investigations according to the limit states such as the serviceability or ultimate limit state and the conditions of multiple loads. Finally, repair intervals for the structural management of armor units of rubble-mound breakwaters could quantitatively be evaluated by a new approach suggested in this paper that has been based on the target probability for repair and the accumulated probabilities of failure obtained from the present stochastic reliability analysis model.

Probability of Failure of Armor Units on Rubble-mound Breakwater with Safety Factor (안전계수에 따른 경사제 피복재의 파괴확률)

  • 이철응;안성모
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.1
    • /
    • pp.9-17
    • /
    • 2001
  • A probability of failure of armor units on rubbJe-mound breakwater are evaluated by using the direct method for reliability analysis, which is represented as a function of safety factor that has been extensively used in practical design. The reliability function is fonnulated based on Hudson formula suggested for designing the stable size of armor units on rubble-mound breakwater. Several kinds of stability coefficient are applied separately to calculate the probability of failure with respect to the type of armor units, breaking/nonbreaking and the correlation coefficients between random variables. [n addition, the sensitivity analyses are carried out to investigate quantitatively into the effects of each random variable in the reliability function on the probability of failure.

  • PDF

Stochastic Probability Model for Preventive Management of Armor Units of Rubble-Mound Breakwaters (경사제 피복재의 유지관리를 위한 추계학적 확률모형)

  • Lee, Cheol-Eung;Kim, Sang Ug
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1007-1015
    • /
    • 2013
  • A stochastic probability model based on the non-homogeneous Poisson process is represented that can correctly analyze the time-dependent linear and nonlinear behaviors of total damage over the occurrence process of loads. Introducing several types of damage intensity functions, the probability of failure and the total damage with respect to mean time to failure has been investigated in detail. Taking particularly the limit state to be the random variables followed with a distribution function, the uncertainty of that would be taken into consideration in this paper. In addition, the stochastic probability model has been straightforwardly applied to the rubble-mound breakwaters with the definition of damage level about the erosion of armor units. The probability of failure and the nonlinear total damage with respect to mean time to failure has been analyzed with the damage intensity functions for armor units estimated by fitting the expected total damage to the experimental datum. Based on the present results from the stochastic probability model, the preventive management for the armor units of the rubble-mound breakwaters would be suggested to make a decision on the repairing time and the minimum amounts repaired quantitatively.

Reliability Analysis on Stability of Armor Units for Foundation Mound of Composite Breakwaters (혼성제 기초 마운드의 피복재 안정성에 대한 신뢰성 해석)

  • Cheol-Eung Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.2
    • /
    • pp.23-32
    • /
    • 2023
  • Probabilistic and deterministic analyses are implemented for the armor units of rubble foundation mound of composite breakwaters which is needed to protect the upright section against the scour of foundation mounds. By a little modification and incorporation of the previous empirical formulas that has commonly been applied to design the armor units of foundation mound, a new type formula of stability number has been suggested which is capable of taking into account slopes of foundation mounds, damage ratios of armor units, and incident wave numbers. The new proposed formula becomes mathematically identical with the previous empirical formula under the same conditions used in the developing process. Deterministic design have first been carried out to evaluate the minimum weights of armor units for several conditions associated with a typical section of composite breakwater. When the slopes of foundation mound become steepening and the incident wave numbers are increasing, the bigger armor units more than those from the previous empirical formula should be required. The opposite trends however are shown if the damage ratios is much more allowed. Meanwhile, the reliability analysis, which is one of probabilistic models, has been performed in order to quantitatively verify how the armor unit resulted from the deterministic design is stable. It has been confirmed that 1.2% of annual encounter probability of failure has been evaluated under the condition of 1% damage ratio of armor units for the design wave of 50 years return period. By additionally calculating the influence factors of the related random variables on the failure probability due to those uncertainties, it has been found that Hudson's stability coefficient, significant wave height, and water depth above foundation mound have sequentially been given the impacts on failure regardless of the incident wave angles. Finally, sensitivity analysis has been interpreted with respect to the variations of random variables which are implicitly involved in the formula of stability number for armor units of foundation mound. Then, the probability of failure have been rapidly decreased as the water depth above foundation mound are deepening. However, it has been shown that the probability of failure have been increased according as the berm width of foundation mound are widening and wave periods become shortening.

Stability Number of Additionally Placed Armor Unit (Tetrapod) Covered on Existing Two-Layered Tetrapod Rubble Mound Structures: Pattern Placing Condition (기존 2층 피복 테트라포드 상부에 추가 거치되는 피복재(테트라포드)의 안정계수: 정적거치 조건)

  • Kim, Young-Taek;Lee, Jong-In
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.516-523
    • /
    • 2020
  • Since the aging of coastal structures have been increased, the researches about the reinforcements of the existing aged structures are needed. Especially, the existing armor units placed on rubble mound structures should satisfy the stability against the increased design wave conditions. However the researches about these design problems have not been performed. In this study, the hydraulic model tests to investigate the stability number about the additionally placed armor unit were conducted. The main armor unit is a Tetrapod. The test results showed that the stability number (Kd) for additionally placed armor units(Tetrapod) increased up to maximum 10% comparing with that for 2 layers tetrapod (Kd = 8) within these test conditions with the pattern placing for existing armor layers and the stable armor layer slope for the non overtopping condition.