• 제목/요약/키워드: armillary clock

검색결과 9건 처리시간 0.022초

송이영(宋以穎) 혼천시계(渾天時計)의 천체운행 장치 구조와 작동원리 연구 (STUDY ON THE STRUCTURE AND WORKING PRINCIPLE OF SONG I-YŎNG'S ARMILLARY CLOCK)

  • 이용삼;김상혁
    • Journal of Astronomy and Space Sciences
    • /
    • 제24권2호
    • /
    • pp.167-178
    • /
    • 2007
  • 국보 제230호 송이영(宋以穎)의 혼천시계(渾天時計)는 동아시아에 유일하게 현존하는 혼천시계로서 현재 보존 상태는 부품 일부가 훼손되고 유실되어 작동되지 않고 있다. 우리는 고려대학 박물관에 소장된 이 유물의 학술조사를 수행하여 혼천의 부분의 구조와 원리를 분석하고, 유실된 기계의 태양과 달의 구동장치를 복원하고, 각 부품과 장치를 제작 조립하여 혼천시계의 혼천의 부분의 작동모델을 복원함으로서 천체운행 장치를 작동하게 하였다.

혼천시계의 시보시스템 구조 분석 (AN ANALYSIS OF STRUCTURE ON TIME SIGNAL SYSTEM OF HONCHEONSIGYE)

  • 김상혁;이용삼
    • 천문학논총
    • /
    • 제28권2호
    • /
    • pp.17-23
    • /
    • 2013
  • Song I-Yeong (1619 ~ 1692), who was an astronomy professor of Gwansanggam (觀象監, Bureau of Astronomy), created the Honcheonsigye (渾天時計, Armillary Clock) in 1669 (10th year of King Hyeonjong Era). Honcheonsigye was a unique astronomical clock which combined an armillary sphere, the traditional astronomical instrument of the Far East, with the power mechanism of western alarm clock. The clock part of this armillary clock is composed of two major parts which are the going-train, power unit used the weight, and the time signal system in a wooden case. The time signal system is composed of four parts which are the time-annunciator, the striking train, the 12 different time-announcing medallions and the sound bell. This clock has been neglected for many years and its several components have been lost. This study is to understand the structure of time signal system and suggests the restoration process.

홍대용 통천의의 혼천의 연구 (A STUDY ON THE ARMILLARY SPHERE OF TONGCHEON-UI DESCRIBED BY HONG DAE-YONG)

  • 민병희;윤용현;김상혁;기호철
    • 천문학논총
    • /
    • 제36권3호
    • /
    • pp.79-95
    • /
    • 2021
  • This study aims to develop a restoration model of an armillary sphere of Tongcheon-ui (Pan-celestial Armillary Sphere) by referring to the records of Damheonseo (Hong Dae-Yong Anthology) and the artifact of an armillary sphere in the Korean Christian Museum of Soongsil University. Between 1760 and 1762, Hong, Dae-Yong (1731-1783) built Tongcheon-ui, with Na, Kyung-Jeok (1690-1762) designing the basic structure and Ann, Cheo-In (1710-1787) completing the assembly. The model in this study is a spherical body with a diameter of 510 mm. Tongcheon-ui operates the armillary sphere by transmitting the rotational power from the lantern clock. The armillary sphere is constructed in the fashion of a two-layer sphere: the outer one is Yukhab-ui that is fixed; and the inner one, Samsin-ui, is rotated around the polar axis. In the equatorial ring possessed by Samsin-ui, an ecliptic ring and a lunar-path ring are successively fixed and are tilted by 23.5° and 28.5° over the equatorial ring, respectively. A solar miniature attached to a 365-toothed inner gear on the ecliptic ring reproduces the annual motion of the Sun. A lunar miniature installed on a 114-toothed inner gear of the lunar-path ring can also replay the moon's orbital motion and phase change. By the set of 'a ratchet gear, a shaft and a spur gear' installed in the solstice-colure double-ring, the inner gears in the ecliptic ring and lunar-path ring can be rotated in the opposite direction to the rotation of Samsin-ui and then the solar and lunar miniatures can simulate their revolution over the period of a year and a month, respectively. In order to indicate the change of the moon phases, 27 pins were arranged in a uniform circle around the lunar-path ring, and the 29-toothed wheel is fixed under the solar miniature. At the center of the armillary sphere, an earth plate representing a world map is fixed horizontally. Tongcheon-ui is the armillary sphere clock developed by Confucian scholars in the late Joseon Dynasty, and the technical level at which astronomical clocks could be produced at the time is of a high standard.

홍대용이 제작한 천문시계 통천의의 기계동력시스템 (MECHANICAL POWER SYSTEM OF TONGCHEON-UI, AN ASTRONOMICAL CLOCK MADE BY HONG, DAE-YONG)

  • 민병희;윤용현;김상혁;기호철
    • 천문학논총
    • /
    • 제35권3호
    • /
    • pp.43-57
    • /
    • 2020
  • Hong, Dae-Yong manufactured the Tongcheon-ui (Pan-celestial Armillary Sphere) with cooperating clock researcher Na, Kyeong-Jeok, and its craftsman An, Cheo-In, in Naju of Jeolla Province in 1760 ~ 1762. Tongcheon-ui is a kind of astronomical clock with an armillary sphere which is rotated by the force generated by a lantern clock's weight. In our study, we examine the lantern clock model of Tongcheon-ui through its description of the articles written by Hong himself. As his description, however, did not explain the detail of the mechanical process of the lantern clock, we investigate the remains of lantern clocks in the possession of Korea University Museum and Seoul National University Museum. Comparing with the clocks of these museums, we designed the lantern clock model of Tongcheon-ui which measures 115 mm (L) × 115 mm (W) × 307 mm (H). This model has used the structure of the striking train imitated from the Korea University Museum artifact and is also regulated by a foliot escapement which is connected to a going train for timekeeping. The orientation of the rotation of the going train and the striking train of our model makes a difference with the remains of both university museums. That is, on the rotation axis of the first gear set of Tongcheon-ui's lantern clock, the going and the striking trains take on a counterclockwise and clockwise direction, respectively. The weight of 6.4 kg makes a force driving these two trains to stick to the pulley on the twine pulling across two spike gears corresponding to the going train and the striking train. This weight below the pulley may travel down about 560 mm per day. We conclude that the mechanical system of Tongcheon-ui's lantern clock is slightly different from the Japanese style.

송이영(宋以頴)의 생애와 천문업적 (LIFE AND ASTRONOMICAL CONTRIBUTION OF SONG, I-YEONG)

  • 김상혁;민병희;서윤경;이용삼
    • 천문학논총
    • /
    • 제33권3호
    • /
    • pp.31-44
    • /
    • 2018
  • Song, I-Yeong (1619 ~ ?) was an active astronomer in the Joseon dynasty at the era of adopting the Shixian-li, Chinese calendar in Qing dynasty. His astronomical contribution was recorded in Annals of the Joseon Dynasty, Diary of the Royal Secretariat, Comparative Review of Records and Documents-Its Revision and Enlargement, and Treatise on the Bureau of Astronomy. In addition the details on his life and works were found at the genealogies of the Song Family from Yeonan and the Kim Family from Seonsan. His major astronomical activities can be summarized in three items. First, as a specialist astronomer, he has attempted to make a systematic observation of two comets. Second, he designed and fabricated the Jamyeong-jong, the weight-powered armillary clock, which became a typical model of the astronomical clock in the Joseon dynasty. Last, he served as a royal astronomical professor, greatly contributing on implementing the Shixian-li. Song has concentrated on performing astronomical duties for his royal official service time. Song is regarded as an important astronomer who made it possible to enforce the Shixian-li until the late Joseon dynasty.

A Study for the Restoration of Hong Dae-Yong Honsangui - Focusing on the structure and operating mechanism -

  • Lee, Yong Sam;Kim, Sang Hyuk;Park, Je Hoon
    • Journal of Astronomy and Space Sciences
    • /
    • 제30권3호
    • /
    • pp.187-192
    • /
    • 2013
  • Honsangui (celestial globe) which is a water-hammering method astronomical clock is recorded in "Juhaesuyong" which is Volume VI of supplement from "Damheonseo", written by Hong Dae-Yong (1731~1783). We made out the conceptual design of Hong Dae-Yong's Honsangui through the study on its structure and working mechanism. Honsangui consist of three rings and two layers, the structure of rings which correspond to outer layer is similar to his own Tongcheonui (armillary sphere) which is a kind of armillary sphere. Honsang sphere which correspond to inner layer depicts constellations and milky way and two beads hang on it as Sun and Moon respectively for realize the celestial motion. Tongcheonui is operated by the pendulum power but Honsangui is operated by water-hammering method mechanism. This Honsangui's working mechanism is the traditional way of Joseon and it was simplified the working mechanism of Shui y$\ddot{u}$n i hsiang t'ai which is a representative astronomical clock of China. This record of Honsangui is the only historical record about the water-hammering method working mechanism of Joseon Era and it provide the study of water-hammering method mechanism with a vital clue.

Astronomical Instruments with Two Scales Drawn on Their Common Circumference of Rings in the Joseon Dynasty

  • Mihn, Byeong-Hee;Choi, Goeun;Lee, Yong Sam
    • Journal of Astronomy and Space Sciences
    • /
    • 제34권1호
    • /
    • pp.45-54
    • /
    • 2017
  • This study examines the scale unique instruments used for astronomical observation during the Joseon dynasty. The Small Simplified Armillary Sphere (小簡儀, So-ganui) and the Sun-and-Stars Time-Determining Instrument (日星定時儀, Ilseong-jeongsi-ui) are minimized astronomical instruments, which can be characterized, respectively, as an observational instrument and a clock, and were influenced by the Simplified Armilla (簡儀, Jianyi) of the Yuan dynasty. These two instruments were equipped with several rings, and the rings of one were similar both in size and in scale to those of the other. Using the classic method of drawing the scale on the circumference of a ring, we analyze the scales of the Small Simplified Armillary Sphere and the Sun-and-Stars Time-Determining Instrument. Like the scale feature of the Simplified Armilla, we find that these two instruments selected the specific circumference which can be drawn by two kinds of scales. If Joseon's astronomical instruments is applied by the dual scale drawing on one circumference, we suggest that 3.14 was used as the ratio of the circumference of circle, not 3 like China, when the ring's size was calculated in that time. From the size of Hundred-interval disk of the extant Simplified Sundial in Korea, we make a conclusion that the three rings' diameter of the Sun-and-Stars Time-Determining Instrument described in the Sejiong Sillok (世宗實錄, Veritable Records of the King Sejong) refers to that of the middle circle of every ring, not the outer circle. As analyzing the degree of 28 lunar lodges (lunar mansions) in the equator written by Chiljeongsan-naepyeon (七政算內篇, the Inner Volume of Calculation of the Motions of the Seven Celestial Determinants), we also obtain the result that the scale of the Celestial-circumference-degree in the Small Simplified Armillary Sphere was made with a scale error about 0.1 du in root mean square (RMS).

Structure and Conceptual Design of a Water-Hammering-Type Honsang for Restoration

  • Lee, Yong-Sam;Kim, Sang-Hyuk
    • Journal of Astronomy and Space Sciences
    • /
    • 제29권2호
    • /
    • pp.221-232
    • /
    • 2012
  • We analyzed the manufacturing procedure, specifications, repair history, and details of celestial movements of the water-hammering type $Honsang$ (celestial globe). Results from our study on the remaining $Honsangs$ in China and Japan and on the reconstruction models in Korea were applied to our conceptual design of the water-hammering type $Honsang$. A $Honui$ (armillary sphere) and $Honsang$ using the water-hammering method were manufactured in $Joseon$ in 1435 (the 17th year of King $Sejong$). $Jang$ $Yeong-Sil$ developed the $Honsang$ system based on the water-operation method of $Shui$ $y{\ddot{u}}n$ $i$ $hsiang$ $t'ai$ in China. Water-operation means driving water wheels using a water flow. The most important factor in this type of operation is the precision of the water clock and the control of the water wheel movement. The water-hammering type $Honsang$ in $Joseon$ probably adopted the $Cheonhyeong$ (天衡; oriental escapement device) system of $Shui$ $y{\ddot{u}}n$ $i$ $hsiang$ $t'ai$ in China and the overflow mechanism of $Jagyeongnu$ (striking clepsydra) in $Joseon$, etc. In addition to the $Cheonryun$ system, more gear instruments were needed to stage the rotation of the $Honsang$ globe and the sun's movement. In this study, the water-hammering mechanism is analyzed in the structure of a water clock, a water wheel, the $Cheonhyeong$ system, and the $Giryun$ system, as an organically working operation mechanism. We expect that this study will serve as an essential basis for studies on $Heumgyeonggaknu$, the water-operating astronomical clock, and other astronomical clocks in the middle and latter parts of the $Joseon$ dynasty.

흠경각루 시보시스템의 작동모델 (OPERATIONAL MODEL OF TIME-KEEPING SYSTEMS OF HEUMGYEONGGAK-NU)

  • 김상혁;윤용현;민병희;임병근;윤명균;임병시
    • 천문학논총
    • /
    • 제34권3호
    • /
    • pp.31-40
    • /
    • 2019
  • 보루각루를 발전시킨 흠경각루는 세종이 계획하고 장영실이 제작했다. 1438년에 완성한 흠경각루는 수격식 혼의와 혼상의 동력 발생 방식(Lee & Kim, 2012; Mihn et al., 2016)을 채택하였을 뿐만 아니라, 보루각루에서 검증된 구슬 신호 방식과 방목장치를 개량한 걸턱 신호를 활용한 것으로 추론된다. 비록 흠경각루의 내부 구조에 대한 자세한 기술은 없지만, 가산의 상층, 중층, 하층에서 시각에 따라 운행되는 시보시스템 모델을 구체적으로 제시하였다. 본 연구의 흠경각루 모델은 수차의 회전 동력이 기륜 주축에 연결된 세 기륜(4신기륜, 시보기륜, 12신기륜)의 회전력을 기반으로 각종 인형들을 작동시키는 메커니즘으로 구현하였다. 흠경각루 시보시스템 모델을 통한 작동구조와 주요 특징을 정리하면 다음과 같다. 첫째, 4신기륜은 걸턱과 지레를 이용해 4신옥녀의 종을 치고, 4신이 90℃씩 회전하도록 구성했다. 둘째, 시보기륜에서 주전의 역할과 기능을 갖도록 12시진·5경·5점의 걸턱, 밀쇠, 구슬키잡이를 설치해 구슬신호를 발생시키고, 구슬신호 분배기를 통해 경점시간을 알렸다. 셋째, 12신기륜에서 걸턱, 마중쇠, 저울쇠 등을 설치해 12신옥녀와 12신의 작동을 제어했다. 보루각루를 더욱 발전시킨 흠경각루에서는 걸턱, 지레, 주전, 구슬 신호 등을 적용하여 이슬람의 기술요소를 다양한 방식으로 확장하여 적용했다. 이러한 전통은 17세기 조선의 혼천시계 제작 방법에서도 그대로 계승되었다.